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Abstract Stress is known to inhibit neuronal growth in the hippocampus. In
addition to reducing the size and complexity of the dendritic tree, stress and
elevated glucocorticoid levels are known to inhibit adult neurogenesis. Despite the
negative effects of stress hormones on progenitor cell proliferation in the hippo-
campus, some experiences which produce robust increases in glucocorticoid levels
actually promote neuronal growth. These experiences, including running, mating,
enriched environment living, and intracranial self-stimulation, all share in common
a strong hedonic component. Taken together, the findings suggest that rewarding
experiences buffer progenitor cells in the dentate gyrus from the negative effects of
elevated stress hormones. This chapter considers the evidence that stress and
glucocorticoids inhibit neuronal growth along with the paradoxical findings of
enhanced neuronal growth under rewarding conditions with a view toward
understanding the underlying biological mechanisms.
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1 Introduction

‘‘Stress’’ has been classically defined as an environmental challenge that produces
a physiological response resulting in the release of specific ‘‘stress’’ hormones
such as glucocorticoids (McEwen 2002; Sapolsky 2004). Although this classic
definition seems neutral, another implicit aspect of most definitions of ‘‘stress’’ is
that the environmental challenge has an aversive component. Although neutral or
even appetitive stimuli can activate stress hormone systems, the most common
contemporary definition of stress connotes a negative state.

It is now generally accepted that stress has detrimental actions on the structure
and function of the hippocampus (reviewed in Conrad 2010). Stress is known to
alter hippocampal structure and synaptic plasticity in a variety of ways, including
decreasing dendritic arborization and spine density (Watanabe et al. 1992; Mag-
ariños et al. 1996; McKittrick et al. 2000; Bessa et al. 2009; Christian et al. 2011),
decreasing cell proliferation and adult neurogenesis (Gould et al. 1997; Pham et al.
2003; Ferragud et al. 2010), reducing overall hippocampal volume (Golub et al.
2011; Pham et al. 2003), and reducing hippocampal LTP (Foy et al. 1987; Shors
et al. 1997; Pavlides et al. 2002), although this latter effect seems to be specific to
dorsal subsections of the hippocampus (Maggio and Segal 2007). All of these
alterations have been proposed as mediators of stress-induced impairments in
hippocampal-dependent learning (Conrad 2006; Howland and Wang 2008; Leuner
and Gould 2010). However, more recent work demonstrating either no effects or
even positive effects of elevated stress hormones on hippocampal structure and
function suggests a broader view is necessary. This review will focus on both
negative and positive effects of stress on adult neurogenesis, various modulators of
these effects, and functional relevance of changes in hippocampal structure, with
an emphasis on adult neurogenesis.
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1.1 Adult Neurogenesis in the Mammalian Brain

Because the production of new neurons leads to synaptogenesis, as well as axonal
elongation and dendritic elaboration, adult neurogenesis is perhaps the most fun-
damental of all types of structural change. The rate of adult neurogenesis in the
mammalian brain is highest in two regions; the subgranular zone (SGZ), of the
dentate gyrus, and subventricular zone (SVZ), from which new neurons migrate to
the olfactory bulb (see Sects. 2.1 and 2.2 of this edition). Adult neurogenesis can
be divided into three distinct stages: cell proliferation, neuronal differentiation, and
cell survival (Christie and Cameron 2006). Each stage represents a plastic process
that can be influenced by stress.

Cell proliferation refers to the mitosis of progenitor cells located in the SGZ of
the dentate gyrus and the SVZ. Neuronal differentiation refers to the development
of daughter cells into neurons. Most new cells in the dentate gyrus differentiate
into granule neurons (80–95 %, depending on factors such as species, age, and
location of granule cells within the dentate gyrus (Cameron et al. 1993b; Cameron
and McKay 2001; Brown et al. 2003; Snyder et al. 2009a). A smaller percentage of
new cells (*10), become glia (Cameron et al. 1993b; Steiner et al. 2004). In the
SVZ, new cells migrate along the rostral migratory stream (Luskin 1993; Lois and
Alvarez-Buylla 1994) where *95 % differentiate into granule cells (Lledo and
Saghatelyan 2005) with the rest becoming periglomerular cells. The time course of
maturation of new cells into neurons in the dentate gyrus can vary, as research has
shown that new cells in the adult rat dentate gyrus select a neuronal fate more
quickly than those in the adult mouse (Snyder et al. 2009a).

New neurons undergo morphological and electrophysiological alterations as
they mature. By a few weeks after cell proliferation, new neurons develop the
morphological characteristics of granule cells. New granule cells in the dentate
gyrus grow dendritic arbors extending toward the molecular layer (Ribak et al.
2004), send axons into the CA3 region of the hippocampus (Hastings and Gould
1999; Zhao et al. 2006), generate action potentials (van Praag et al. 2002), and are
activated by functionally relevant cues (Ramirez-Amaya et al. 2006; Tashiro et al.
2007; Snyder et al. 2012). In the olfactory bulb, new granule cells exhibit dynamic
dendritic growth and structural plasticity (Petreanu and Alvarez-Buylla 2002). By
the time of their full maturation, new granule cells are electrophysiologically
identical to granule cells generated during development (Petreanu and Alvarez-
Buylla 2002), and are activated by functionally relevant olfactory cues (Magavi
et al. 2005). New granule cells can survive for periods up to a year or longer
(Petreanu and Alvarez-Buylla 2002; Dayer et al. 2003), but many new neurons die
within a few weeks of their production. In rodents, only about 50 % of new
granule cells survive after the first few weeks in the dentate gyrus and olfactory
bulb (Petreanu and Alvarez-Buylla 2002; Winner et al. 2002; Dayer et al. 2003).
Research has shown that cell proliferation, neuronal differentiation, and cell sur-
vival are influenced by multiple environmental factors (Leuner and Gould 2010),
with a large number of stress studies examining effects on cell proliferation.
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Research has also preferentially focused on environmental influences on adult
neurogenesis in the dentate gyrus with fewer studies focused on the SVZ and
olfactory bulb.

2 Stress Inhibits Adult Neurogenesis in the Dentate Gyrus

2.1 Acute Stress Reduces Cell Proliferation

Overall, research suggests that acute exposure to a stressful situation decreases cell
proliferation in the dentate gyrus. Acute exposure to a dominant conspecific (social
defeat) reduces cell proliferation in the dentate gyrus in mice, tree shrews, and
marmosets (Gould et al. 1997, 1998; Yap et al. 2006; Lagace et al. 2010). Simi-
larly, acute exposure to trimethylthiazoline, a natural odor of foxes, predators to
rodents, decreases cell proliferation in the rat (Tanapat et al. 2001; Mirescu et al.
2004; Hill et al. 2006; Kambo and Galea 2006). Moreover acute electric shock
decreases cell proliferation in the rat (Malberg and Duman 2003). In addition to
studies examining cell proliferation, decreases in neuronal differentiation are seen
following acute predator odor in the rat (Tanapat et al. 2001), and decreased
survival of new granule cells has been observed following acute social defeat and
acute predator odor exposure in the rat (Tanapat et al. 2001; Thomas et al. 2007).

The effects of acute physical restraint stress are less clear than the results from
the stressors already discussed. Multiple studies show that acute restraint stress
lasting 2–6 h does not change cell proliferation in adult rats (Kee et al. 2002; Pham
et al. 2003; Rosenbrock et al. 2005). However, one study has shown that 3 h of
restraint decreases cell proliferation in the adult rat, yet increases cell proliferation
in adult mice (Bain et al. 2004). Because variations in restraint protocols are likely
to differentially affect the stress response; comparisons among different restraint
studies are often difficult to make (Buynitsky and Mostofsky 2009).

2.2 Chronic Stress Reduces Cell Proliferation, Neuronal
Differentiation, and Cell Survival

Chronic stress paradigms normally involve stress induction over the course of days
to weeks. Chronic social defeat decreases cell proliferation in the dentate gyrus of
tree shrews (Czeh et al. 2001, 2002; Simon et al. 2005), rats (Czeh et al. 2007), and
mice (Mitra et al. 2006; Ferragud et al. 2010). In mice, decreases in cell prolif-
eration actually correlate with typical behavior of subordinates (Mitra et al. 2006).
Chronic social defeat also decreases the differentiation of new neurons in rats and
mice (Ferragud et al. 2010; Van Bokhoven et al. 2011) and reduces the survival of
new neurons in tree shrews (Czeh et al. 2002) and rats (Czeh et al. 2007). Simi-
larly, chronic electric shock decreases cell proliferation, neuronal differentiation,
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and cell survival in rats (Westenbroek et al. 2004; Dagyte et al. 2009). Chronic
restraint stress studies show similar discrepancies as reported above for acute
restraint stress studies. Chronic restraint stress has been reported to decrease cell
proliferation, neuronal differentiation, and cell survival in rats (Pham et al. 2003;
Veena et al. 2011a, b), have no effect on cell proliferation in rats (Rosenbrock et al.
2005; Barha et al. 2011), and even increase survival of new neurons in rats and
mice (Snyder et al. 2009b; Barha et al. 2011). Again, differences in age, strain,
housing conditions, and type, duration, and frequency of restraint may explain
differences in the effect of chronic restraint stress on adult neurogenesis in the
dentate gyrus.

Numerous studies indicate that training on various learning paradigms stimu-
lates adult neurogenesis in rats (Gould et al. 1999; Leuner et al. 2004, 2006; Epp
et al. 2010). However, when learning is complex or prolonged, it appears to
decrease cell proliferation (Aztiria et al. 2007; Dupret et al. 2007). Stress-related
novelty in a testing environment decreases cell proliferation even though learning
occurs (Ehninger and Kempermann 2006). Finally, increased task difficulty does
not affect cell proliferation, but cell survival decreases in a step-wise manner (Epp
et al. 2010).

Chronic exposure to multiple mild stressors can serve as an animal model
depression, as animals can develop symptoms of learned helplessness over the
course of days and weeks. Switching the stressors during the experiment prevents
habituation. Stressors commonly used in these types of studies vary greatly and
include cold-water swim, immobilization, social isolation, food and water depri-
vation, chronic illumination, white noise exposure, tail pinch, tilted or shaken
cage, and electric shock, although experiments typically do not use all of the
above. It should be noted that the specific types of stressors used may be
responsible for producing differential effects on adult neurogenesis. In general, cell
proliferation is decreased following exposure to multiple stressors (Xu et al. 2007;
Surget et al. 2008). Some studies suggest that this effect may be limited to ventral
portions of the hippocampus (Elizalde et al. 2010; Tanti et al. 2012), although most
earlier studies on this topic did not differentiate between dorsal and ventral parts of
the hippocampus. Stress can also diminish differentiation and survival of neurons
born before stressor exposure (Lee et al. 2006; Oomen et al. 2007; Dagyte et al.
2011). Together, these studies show that chronic exposure to stressful situations is
detrimental to adult neurogenesis in the dentate gyrus in that it decreases cell
proliferation, neuronal differentiation, and cell survival.

3 Variations in Age and Sex Complicate the Effects
of Stress on Adult Neurogenesis in the Dentate Gyrus

The rates of cell proliferation and adult neurogenesis decrease with age in the
dentate gyrus of all species examined, including mice, rats, tree shrews, dogs,
marmosets, and macaques (Seki and Arai 1995; Kuhn et al. 1996; Cameron and
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McKay 1999; Gould et al. 1999; Simon et al. 2005; Leuner et al. 2007). Stress
produces a greater decrease in cell proliferation in the aged tree shrew compared to
younger adult tree shrews (Simon et al. 2005), suggesting that older animals may
be more susceptible to the negative effects of stress.

Sex differences in baseline adult neurogenesis in the dentate gyrus in control
animals have not been reported, although cell proliferation rates vary due to the
phase of estrous cycle in female rats (Tanapat et al. 1999), but not in female mice
(Lagace et al. 2007). However, females and males have shown differences in how
stress affects the production of new neurons. The reduction in cell proliferation in
adult male rats after exposure to predator odor is not seen in female rats (Falconer
and Galea 2003). Male rats show decreases in the survival of new neurons fol-
lowing chronic electric shock, but increases are seen in female rats (Westenbroek
et al. 2004). A recent study suggests that female rats have decreased cell prolif-
eration and survival following chronic restraint, but male rats show no change in
cell proliferation, but an increase in cell survival (Barha et al. 2011). These results
suggest that male and female animals may respond to stress differently although a
clear picture has yet to emerge from these studies.

It should be noted that new neurons in the dentate gyrus mature along a dif-
ferent time scale in adult rats and adult mice. Snyder et al. (2009a) discovered that
rats produce a higher number of new cells, and that these new cells mature faster,
and show greater activation to functional stimuli than such cells in the mouse.
Therefore, potential differences between rats and mice on effects of stress on adult
neurogenesis must take into account the inherent differences that exist between rats
and mice in baseline conditions.

4 Effects of Stress on Cell production in the SVZ

Research on the effects of various stressors on adult neurogenesis in the SVZ has
been limited. Chronic restraint stress has been shown to decrease survival of new
neurons in the olfactory bulb, but has no effect on cell proliferation in the SVZ
(Kaneko et al. 2006). Chronic forced swim stress decreases the number of pro-
genitor cells in the SVZ (Hitoshi et al. 2007). Chronic exposure to multiple mild
stressors reduces the number of immature neurons in the SVZ, although this was
measured using an endogenous marker of immature neurons, so it is unclear
whether these effects are from decreased proliferation or differentiation into new
neurons (Yang et al. 2011). Because chronic exposure to mild multiple stressors
does not affect cell proliferation in the SVZ (Silva et al. 2008), the effect from
Yang et al. (2011) may be a result of decreased differentiation of new cells into
neurons. Conversely, chronic exposure to mild multiple stressors reduces the
number of proliferating cells in the SVZ, but it is unclear whether this reflects on
decreases in the number of progenitor cells or decreases in the rate of cell pro-
liferation (Mineur et al. 2007).
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5 Rewarding Experiences Enhance Adult Neurogenesis
in the Dentate Gyrus, Despite Elevated Levels of Stress
Hormones

Despite the numerous studies linking stress and elevated glucocorticoid levels to
suppressed neurogenesis, there are some experiences that stimulate the release of
stress hormones, but enhance adult neurogenesis in the dentate gyrus. For example,
running increases stress hormone, or glucocorticoid, levels in the blood (Droste
et al. 2003; Makatsori et al. 2003; Stranahan et al. 2006), yet increases cell pro-
liferation, induces neuronal differentiation, and enhances survival of new neurons
in the dentate gyrus of both mice (van Praag et al. 1999; Klaus et al. 2009; Snyder
et al. 2009b) and rats (Stranahan et al. 2006; Yi et al. 2009). Alcohol-induced
impairments in cell proliferation can be rescued by running (Crews et al. 2004).
This suggests that running engages mechanisms that protect progenitor cells or
new neurons from the detrimental effects of stress-induced release of glucocorti-
coids. However, running does not change proliferation of new cells in the SVZ or
the number of new neurons in the olfactory bulb (Brown et al. 2003; Crews et al.
2004; Schoenfeld et al., unpublished observations). Similarly, housing in an
enriched environment can elevate glucocorticoid levels (Benaroya-Milshtein et al.
2004), while increasing neuronal differentiation and cell survival in adult and aged
mice (van Praag et al. 1999; Kempermann et al. 2002). Living in an enriched
environment also ameliorates stress-induced reductions in cell proliferation, neu-
ronal differentiation, and cell survival in the adult rat (Veena et al. 2009a, b).
Again, this suggests some protective mechanism of enriched environment living
that allows for neuronal growth despite elevated glucocorticoid levels. However,
as observed with running, environmental enrichment has no effect on proliferation
of new cells in the SVZ or the number of new neurons in the olfactory bulb
(Brown et al. 2003; Plane et al. 2008).

Sexual experience also increases circulating glucocorticoid levels (Bonilla-Jaime
et al. 2006). Both acute and repeated sexual experiences increase cell proliferation in
the dentate gyrus of adult rats, and chronic sexual experience also enhances survival
of new neurons in the dentate gyrus (Leuner et al. 2010). The effect of sexual
experience on cell proliferation and neurogenesis in the olfactory bulb has not been
examined.

Taken in the context of the negative actions of most stressors on adult neuro-
genesis, the findings on the positive effects of running, enriched housing, sexual
experience, and learning (Leuner and Gould 2010) raise the question of whether
these experiences share commonalities that permit neuronal growth despite
increased glucocorticoid levels. In this regard, it may be relevant that all of these
experiences are rewarding. Rats show anticipatory behavior toward gaining access
to an enriched environment (van der Harst et al. 2003). Rats form place prefer-
ences for running wheels and mating chambers (Belke and Wagner 2005; Tenk
et al. 2009) and can be trained readily to bar press to gain access to wheels or
receptive females (Hundt and Premack 1963; Everitt et al. 1987). Intercranial self-
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stimulation, a rewarding laboratory experience that taps into circuitry likely
engaged in natural reward, results in increased cell proliferation in the dentate
gyrus of adult rats and mice as well as elevated glucocorticoid levels (Takahashi
et al. 2009). Taken together, these findings suggest that rewarding experience may
encourage mechanisms that protect the brain from negative influences of
glucocorticoids.

6 Mechanisms of Adult Neurogenesis Inhibition
and Stimulation

6.1 Adrenal Steroids

By definition, stress activates the hypothalamic-pituitary-adrenal (HPA) axis,
which results in an elevation of glucocorticoids in the blood. Exogenous admin-
istration of corticosterone, the main rodent glucocorticoid, results in a decrease in
cell proliferation and survival in both the dentate gyrus and SVZ (Cameron and
Gould 1994; Wong and Herbert 2006; Lau et al. 2007; Brummelte and Galea
2010a). The inhibition of cell proliferation by corticosterone occurs in both males
and females (Brummelte and Galea 2010a) and appears to be independent of
reproductive status (Brummelte and Galea 2010b). Conversely, removal of cir-
culating glucocorticoids by adrenalectomy (ADX) promotes cell proliferation and
adult neurogenesis in the dentate gyrus (Gould et al. 1992; Cameron and Gould
1994) and SVZ (Guo et al. 2010). Taken together, these findings suggest that the
rate of cell proliferation and adult neurogenesis in the dentate gyrus and SVZ of
adult rodents can be moderated by circulating levels of glucocorticoids. Since
corticosterone injections produce similar effects on adult neurogenesis as stress, it
is likely that the stress-induced increases in glucocorticoid levels are responsible
for the stress-induced decreases in adult neurogenesis. Indeed, inhibitory effects of
fox odor exposure on cell proliferation in the dentate gyrus can be blocked by
preventing the stress-induced rise in glucocorticoids (Tanapat et al. 2001). It
remains unknown, however, whether these effects are mediated directly via actions
of adrenal steroids on progenitor cells or whether they occur indirectly through
some unknown factor.

Glucocorticoids bind to two main types of receptors in the brain, the gluco-
corticoid receptor (GR) and the mineralocorticoid receptor (MR) (Reul and de
Kloet 1985). Granule cells in the dentate gyrus and olfactory bulb express both
types of adrenal steroid receptors (Morimoto et al. 1996). Because, MRs have
higher affinity for glucocorticoids than GRs, MRs are more likely to be sensitive to
circadian changes in glucocorticoid levels, while GRs are more likely to respond to
stress-induced elevations in glucocorticoid levels (de Kloet et al. 1998). Direct
activation of MRs through the MR-agonist aldosterone in adult ADX rats enhances
cell proliferation and neurogenesis (Fischer et al. 2002), while activation of GRs
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through the GR-agonist dexamethasone in adult rats inhibits cell proliferation
(Kim et al. 2004), further suggesting that elevation of stress hormones act through
GRs to reduce hippocampal neurogenesis.

Although most new neurons express both GR and MR after 4 weeks of mat-
uration, relatively few progenitor cells express adrenal steroid receptors (Cameron
et al. 1993a; Garcia et al. 2004). This raises the possibility that adrenal steroid-
mediated changes in the rate of cell proliferation in the dentate gyrus occur
indirectly. There are several possible mechanisms whereby such an indirect effect
might occur. For instance, glucocorticoids might affect neurogenesis by influ-
encing neighboring, more mature, granule neurons. This could occur either by
altering the survival of granule cells directly or by affecting their afferent inputs.

With regard to the first possibility, ADX results in massive death of mature
granule cells in the dentate gyrus (Sloviter et al. 1989; Gould et al. 1990).
Replacement of ADX rats with aldosterone, a mineralocorticoid that binds with
high affinity to MRs, is sufficient to protect the dentate gyrus from cell death
(Woolley et al. 1991), suggesting that regular activation of MRs is important for
the maintenance of the granule cell population. These findings suggest that dying
mature granule cells may provide signals that stimulate the proliferation of pro-
genitor cells. In this regard, it is relevant to note that direct destruction of the
dentate gyrus, via chemical or mechanical lesion, leads to an increase in the
production of new neurons (Gould and Tanapat 1997). The link between cell
survival and cell proliferation has not been extensively explored in the dentate
gyrus, but several reports suggest that neuronal death can stimulate adult neuro-
genesis in many other brain regions, including the neocortex and striatum (Gould
2007).

An additional, but not mutually exclusive, possibility is that adult neurogenesis is
affected indirectly through adrenal steroid actions on granule cell afferents. Lesion
of the entorhinal cortex, one of the main afferent populations to the dentate gyrus,
stimulates the production of new neurons (Cameron et al. 1995). Likewise, blockade
of NMDA receptors, glutamate receptors involved in perforant path-granule cell
synapses, increases adult neurogenesis (Cameron et al. 1995; Maekawa et al. 2009).
Moreover, manipulation of cholinergic inputs, via either neurotoxin or pharmaco-
logical intervention, alters the rate of adult neurogenesis (Kotani et al. 2006;
Frechette et al. 2009). Although not directly explored in the context of adrenal
steroids, these afferent populations contain adrenal steroid receptors, and may be one
of the intermediate steps between alterations in hormone levels and changes in the
production of new neurons.

6.2 Cytokines, Neurotrophins and Neuropeptides

Inflammation decreases cell proliferation in the rodent dentate gyrus (Ekdahl et al.
2003; Monje et al. 2003). Interleukin-1 (IL-1) is a proinflammatory cytokine that is
a member of a family of immune factors that communicate inflammation to the
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central nervous system. IL-1 incites glucocorticoid release by the adrenal glands
(Bernton et al. 1987). Therefore, IL-1 has been implicated in moderating the
negative effects of stress on cell proliferation and neurogenesis. Exogenous
administration of IL-1b inhibits cell proliferation and neuronal differentiation in
the dentate gyrus of adult mice (Goshen et al. 2008; Koo and Duman 2008).
Progenitor cells in the SGZ have IL-1 receptors, which decrease cell proliferation
when activated (Koo and Duman 2008). Inactivation of IL-1 receptors prevents
stress-induced decreases in cell proliferation (Goshen et al. 2008; Ben Menachem-
Zidon et al. 2008) suggesting that inflammatory cytokines may also regulate adult
neurogenesis. Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a) are
also proinflammatory cytokines associated with mediating adult neurogenesis.
Adult IL-6 knockout mice show enhanced proliferation and survival of new
neurons in the dentate gyrus and SVZ (Bowen et al. 2011) and adult selective TNF
receptor knockout mice have promoted neurogenesis in the dentate gyrus (Iosif
et al. 2006). Also overproduction of IL-6 impairs adult neurogenesis in the dentate
gyrus (Vallieres et al. 2002), further suggesting that inflammatory cytokines can
decrease cell proliferation and may be involved in stress-induced deficits in adult
neurogenesis. Other inflammatory cytokines are likely to moderate the effects of
stress on neurogenesis in the adult.

Neurotrophic factors are important in regulating embryonic neuronal devel-
opment, and many of these factors are altered after exposure to rewarding expe-
riences that promote adult neurogenesis. Brain-derived neurotrophic factor
(BDNF) is a factor in the survival of new neurons in the dentate gyrus (Sairanen
et al. 2005), and blocking BDNF decreases the differentiation of new neurons in
adult mice (Taliaz et al. 2010). BDNF is released following running (Ying et al.
2005), and is required for enriched environment-induced increases in cell prolif-
eration (Rossi et al. 2006). Vascular endothelial growth factor (VEGF) promotes
cell proliferation in the adult rat dentate gyrus (Jin et al. 2002). Chronic stress
decreases VEGF expression (Heine et al. 2005). VEGF is necessary for increases
in cell proliferation and neuronal differentiation in running mice (Fabel et al.
2003), and for enriched environment-induced cell proliferation, neuronal differ-
entiation, and cell survival in rats (Cao et al. 2004). Hence, VEGF is another
potential factor in moderating adult neurogenesis. Insulin-like growth factor 1
(IGF-1) increases cell proliferation in the adult rat dentate gyrus (Aberg et al.
2000) and moderates other positive effects in the brain after running (Carro et al.
2000). Hence, IGF-1 may also be a factor in promoting adult neurogenesis,
although research has not investigated the specific role of IGF-1 in the positive
neurogenic aspects of reward experiences. No studies have yet examined the roles
of BDNF, VEGF, or IGF-1 in sexual experience. Although rewarding behaviors
such as running and environmental enrichment do not affect proliferation and
neurogenesis in the SVZ, BDNF and VEGF administration also increase prolif-
eration of cells in the SVZ and the number of new neurons in the olfactory bulb
(Zigova et al. 1998; Jin et al. 2002; Sun et al. 2006), so growth factors may prevent
decreases in SVZ neurogenesis from elevated glucocorticoid levels.
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The neuropeptide oxytocin is also worth considering in the context of the
effects of rewarding experience on adult neurogenesis. Oxytocin is released in the
hippocampus under conditions of social reward, such as during mating (Waldherr
and Neumann 2007), and has been shown to buffer against the negative actions of
stress (Windle et al. 2004, 2006). Oxytocin has also been shown to stimulate cell
proliferation and adult neurogenesis in the dentate gyrus, even under conditions of
elevated glucocorticoids and stress (Leuner et al. 2012). These findings raise the
possibility that under conditions of reward, oxytocin release into the hippocampus
may bypass the suppressant actions of glucocorticoids on progenitor cells. No
studies have yet addressed this possibility directly.

Neuropeptide Y (NPY) is another candidate in moderating the effects of
rewarding experience on adult neurogenesis. NPY is upregulated in the dentate
gyrus of adult mice during running (Bjornebekk et al. 2006), and administration of
NPY stimulates adult neurogenesis in the dentate gyrus (Howell et al. 2003, 2005).
Because NPY has been associated with behavioral resiliency to stressors (Thorsell
et al. 2000; Carvajal et al. 2004; Cohen et al. 2012), it may mediate the positive
effects of certain rewarding stressors on adult neurogenesis.

Given that corticotropin releasing factor (CRF) and vasopressin are important
modulators of the HPA axis (Holsboer 1999; Aguilera and Rabadan-Diehl 2000),
both neuropeptides may be involved in stress-induced decreases in cell prolifer-
ation and neurogenesis. Although peripheral injections of vasopressin have not
been shown to affect rates of cell proliferation in the dentate gyrus (Leuner et al.
2012), selective vasopressin and CRF receptor antagonists have been shown to
reverse the impairment of cell proliferation and neurogenesis in the dentate gyrus
of chronically stressed mice (Alonso et al. 2004), suggesting that the neuropeptides
CRF and vasopressin may play a role in stress-induced changes in adult neuro-
genesis, although they may act indirectly through manipulation of the HPA axis.

6.3 Neurotransmitters

Neurotransmitters affect new neuron production and may be involved in the
positive and negative effects of different stressors on adult neurogenesis. Excit-
atory neurotransmitters, such as glutamate, have been shown to have suppressive
effects on adult neurogenesis in the dentate gyrus. Activation of glutamatergic
NMDA receptors decreases cell proliferation and survival in the adult dentate
gyrus, while the use of NMDA antagonists shows the opposite action (Cameron
et al. 1995; Gould et al. 1997; Nacher et al. 2003). Consistent with studies on
NMDA receptor blockade, lesion of the entorhinal cortex, a major source of
glutamatergic input to the granule cells through the perforant path has been shown
to increase adult neurogenesis in the dentate gyrus (Cameron et al. 1995).
Somewhat surprisingly, a recent study has shown that electrical stimulation of the
entorhinal cortex also stimulates adult neurogenesis (Stone et al. 2011) raising the
possibility that naturally occurring patterns of entorhinal input typically dampen
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new neuron production. Disruption of this pattern, either through removal of the
afferent population or artificial electrical stimulation removes this brake and allows
a higher rate of adult neurogenesis.

Given the effects that rewarding experiences have on adult neurogenesis, it is
perhaps unsurprising that dopamine has been implicated in the regulation of adult
neurogenesis. However, mixed results have been reported showing either transient
increases or decreases in cell proliferation following dopamine depletion (Hog-
linger et al. 2004; Park and Enikolopov 2010). The effect of dopamine on cell
proliferation may be receptor-dependent (Veena et al. 2011a, b), and importantly,
recent evidence has shown that the new neurons respond differently to dopami-
nergic activation than mature granule cells, suggesting that dopamine may have a
specific role in the maturation and integration of proliferated neurons (Mu et al.
2011). The neurotransmitter serotonin has been shown to also have positive effects
on cell proliferation and neurogenesis in the adult. Ablation of serotonin inner-
vation into the dentate gyrus and serotonin receptor antagonists decreases cell
proliferation (Brezun and Daszta 2000; Radley and Jacobs 2002). Importantly, the
use of antidepressants which selectively block serotonin reuptake can reverse
stress-induced decreases in cell proliferation (Qiu et al. 2007; Hitoshi et al. 2007),
suggesting that the actions of positive stressors on adult neurogenesis may work as
well through serotonergic mechanisms. These neurotransmitters have also been
seen to have similar effects on neurogenesis in the SVZ (reviewed in Young et al.
2011), suggesting that common mechanisms may underlie these effects in both
regions.

Numerous studies suggest that GABA also plays an important role in adult
neurogenesis. In the dentate gyrus, both progenitor cells and new neuroblasts
contain functional GABA-A receptors (Wang et al. 2005). Manipulating these
receptors alters proliferation of progenitor cells in the SGZ, as administration of
GABA-A agonists decrease cell proliferation, and GABA-A antagonists increase
cell proliferation (Tokuza et al. 2005). During the early stage of maturation, new
cells respond to GABA with excitatory actions (Espósito et al. 2005; Overstreet
Wadiche et al. 2005; Ge et al. 2006). New neurons have immature Cl- channels
that cause GABA to have a depolarizing effect during the first few weeks of
maturation (Ge et al. 2006; Pathania et al. 2010). This GABAergic depolarization
of immature granule cells appears to be important for dendritic growth and neu-
ronal differentiation (Deisseroth et al. 2004; Ge et al. 2006). Blocking GABAergic
transmission in immature neurons causes decreased spine density and shorter
dendrites upon maturation (Sun et al. 2009). Ge et al. (2006) showed that altering
Cl- channels to make GABA hyperpolarizing in immature neurons truncates
dendritic growth and synapse formation. Once new neurons mature, they show
typical GABAergic hyperpolarization, and enhanced synaptic potentiation, com-
pared to preexisting neurons (Ge et al. 2006). Interestingly, even after GABA
becomes hyperpolarized, new neurons exhibit enhanced LTP compared to older
neurons (Ge et al. 2007).

Similar effects of GABA on the development and maturation of new neurons in
the adult olfactory bulb have been observed. New GABAergic cells in the
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olfactory bulb release GABA into the extracellular space which acts on progenitor
cells to dampen cell proliferation (Liu et al. 2005). Increased extracellular GABA
slows migration of immature neurons to the olfactory bulb (Bolteus and Bordey
2004; Platel et al. 2008). As observed for new neurons in the dentate gyrus, GABA
is depolarizing to immature olfactory bulb neurons and enhances the complexity of
their dendritic arbors (Gascon et al. 2006). Blocking GABA-A receptors has been
shown to decrease dendritic length of new olfactory bulb neurons (Gascon et al.
2006).

Stress and corticosterone increases dampen GABA release in the hippocampus
(de Groote and Linthorst 2007; Grønli et al. 2007; Martisova et al. 2012).
Therefore, both acute and chronic stress may affect not only the rate of cell
proliferation and neurogenesis in the hippocampus, but GABA signaling as well.
Decreased GABA signaling in the dentate gyrus due to stress may have detri-
mental effects on new neuron maturation and dendritic complexity. On the other
hand, running alters GABA-A receptor expression in the dentate gyrus (Hill et al.
2010). Although specific expression in new neurons was not measured, it is rea-
sonable to suggest that running also changes GABA-A receptors in new neurons.
Running is known to increase expression of GAD67, the synthetic enzyme for
GABA, in the dentate gyrus (Hill et al. 2010), and our recent findings demonstrate
that runners have increased expression of vGAT in the dentate gyrus and show a
transient increase in GABA release in the hippocampus following stress
(Schoenfeld et al., unpublished observations). New neurons born during running in
the dentate gyrus mature faster than in a control condition (Snyder et al. 2009b).
These results suggest that, opposed to stress, running not only increases the pro-
duction of new granule cells, but also may foster a GABAergic environment that
encourages dendritic growth and heightened maturation in new neurons (Fig. 1). It
should be noted that prolonged excitation of new neurons through seizure causes
aberrant dendritic growth in new neurons (Jessberger et al. 2007), and aberrant
development has been linked to psychiatric disorders such as schizophrenia (Lewis
and Levitt 2002). However, running has also been shown to ameliorate behavioral
deficits in mouse models of schizophrenia (Wolf et al. 2011); hence, increased
dendritic growth of new neurons, is not likely to be severe enough to contribute to
pathogenesis.

7 Functional Implications of Changing the Rate of Adult
Neurogenesis in the Dentate Gyrus

Since new neurons in the dentate gyrus have been shown to generate action
potentials and are activated by hippocampal-dependent behaviors (van Praag et al.
1999; Ramirez-Amaya et al. 2006; Kee et al. 2007; Tashiro et al. 2007; Snyder
et al. 2009c; Epp et al. 2011; Snyder et al. 2012), it follows that changes in the rate
of adult neurogenesis, either inhibiting or enhancing it, will have a consequence on
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hippocampal-dependent functions. The hippocampus contributes to specific types
of learning and memory (Moser et al. 1993; Ergorul and Eichenbaum 2004), is
important for anxiety regulation (Bannerman et al. 2004; Fanselow and Dong
2010), and modulates feedback of the stress response (Herman et al. 1989;
Jacobson and Sapolsky 1991; Herman et al. 1995; Herman and Mueller 2006). All
of these functions can be affected by manipulations that are known to change the
rate of adult neurogenesis.

Cell proliferation in the dentate gyrus can be knocked down through admin-
istration of antiproliferative agents (Shors et al. 2001; Garthe et al. 2009), irra-
diation (Madsen et al. 2003), and with transgenic models (Garcia et al. 2004).
Decreasing neurogenesis in rats results in impaired spatial learning on the Morris
water maze, contextual fear conditioning, and trace eye blink conditioning, with no
effect on hippocampal-independent cued fear conditioning and delayed eyeblink
conditioning (Shors et al. 2001, 2002; Madsen et al. 2003; Snyder et al. 2005;
Winocur et al. 2006; Saxe et al. 2006; Warner-Schmidt et al. 2008; Imayoshi et al.
2008; Farioli-Vecchioli et al. 2008; Jessberger et al. 2009). In rats, spatial learning
and contextual fear conditioning deficits do not appear until at least 4 weeks
following the reduction in new neuron production (Shors et al. 2002; Madsen et al.
2003; Snyder et al. 2005, 2009a; Jessberger et al. 2009), suggesting that the
maturation of new neurons is necessary for hippocampal-dependent learning in

Fig. 1 Schematic diagram of the effects of running and stress on cell proliferation and
maturation of new granule cells in the dentate gyrus. Running increases production of new cells
and stimulates GABA release. GABA depolarizes immature neurons, fostering dendritic growth
and synaptic maturation. Conversely, stress decreases proliferation of new cells and blocks
GABA release, resulting in stunted dendritic growth and maturation
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rats. In mice, findings are less clear. Studies have shown either deficits or no
change in contextual fear conditioning and spatial learning in mice of different
strains, sex, and ages, from different time points following ablation (reviewed in
Castilla-Ortega et al. 2011). Because new neurons mature more slowly in mice
than rats (Snyder et al. 2009a), and different mouse strains exhibit different
baseline rates of adult neurogenesis (Kempermann and Gage 2002; Schauwecker
2006; Clark et al. 2011), differences in the effects of deleting adult neurogenesis on
learning in mice may be difficult to interpret as general phenomena.

The dentate gyrus has been implicated in mediating pattern separation, the
process where highly similar, overlapping representations are dissociated to keep
them independent in episodic memory (O’Reilly and McClelland 1994). Adult
neurogenesis has been proposed as an important mechanism for pattern separation
in the dentate gyrus (Deng et al. 2010). Increasing adult neurogenesis through
genetic induction of cell proliferation results in enhanced spatial pattern separation
in adult mice (Sahay et al. 2011). Knocking out hippocampal neurogenesis impairs
spatial pattern separation in adult mice (Clelland et al. 2009; Tronel et al. 2012).
Running-induced increases in cell proliferation are correlated with higher spatial
pattern separation in adult mice (Creer et al. 2010). This evidence suggests that
stress-reduced adult neurogenesis in the dentate gyrus may have profound effects
on hippocampal-dependent memory formation and learning.

Recent evidence indicates that the new neurons play an important role in shutting
off the HPA axis after stress (Snyder et al. 2011; Surget et al. 2011). Corticosterone
levels are slower to recover to baseline following moderate stress, and the HPA axis
is less suppressed by dexamethasone, showing impaired HPA axis feedback, in
adult mice without new neurons in the dentate gyrus (Snyder et al. 2011). Although
Surget et al. (2011) did not find differences in HPA axis recovery following stress of
animals with ablated neurogenesis, they found that the beneficial actions of anti-
depressants on HPA axis recovery following stress required new neurons. Taken
together, these findings suggest that new neurons may play an important role not
only in the cognitive functions of the hippocampus, but also in stress regulation. The
extent to which stress-induced reductions in adult neurogenesis contribute to
increased pathological processes associated with chronic stress, such as anxiety
disorders, depression, and HPA axis dysregulation, remains to be determined.
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