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ABSTRACT
BACKGROUND: Excessive repetitive behavior is a debilitating symptom of several neuropsychiatric disorders.
Parvalbumin-positive inhibitory interneurons in the dorsal striatum have been linked to repetitive behavior, and a
sizable portion of these cells are surrounded by perineuronal nets (PNNs), specialized extracellular matrix
structures. Although PNNs have been associated with plasticity and neuropsychiatric disease, no previous studies
have investigated their involvement in excessive repetitive behavior.
METHODS: We used histochemistry and confocal imaging to investigate PNNs surrounding parvalbumin-positive
cells in the dorsal striatum of 4 mouse models of excessive repetitive behavior (BTBR, Cntnap2, Shank3, prenatal
valproate treatment). We then investigated one of these models, the BTBR mouse, in detail, with DiI labeling,
in vivo and in vitro recordings, and behavioral analyses. We next degraded PNNs in the dorsomedial striatum
(DMS) using the enzyme chondroitinase ABC and assessed dendritic spine density, electrophysiology, and
repetitive behavior.
RESULTS: We found a greater percentage of parvalbumin-positive interneurons with PNNs in the DMS of all 4 mouse
models of excessive repetitive behavior compared with control mice. In BTBR mice, we found fewer dendritic spines
on medium spiny neurons (targets of parvalbumin-positive interneurons) and differences in neuronal oscillations as
well as inhibitory postsynaptic potentials compared with control mice. Reduction of DMS PNNs in BTBR mice
altered dendritic spine density and inhibitory responses and normalized repetitive behavior.
CONCLUSIONS: These findings suggest that cellular abnormalities in the DMS are associated with maladaptive
repetitive behaviors and that manipulating PNNs can restore normal levels of repetitive behavior while altering DMS
dendritic spines and inhibitory signaling.

https://doi.org/10.1016/j.bpsgos.2021.11.005
Maladaptive repetitive behavior is a common symptom of
several neuropsychiatric disorders, including autism spectrum
disorder, schizophrenia, obsessive-compulsive disorder, and
other anxiety-related psychopathologies (1–5). These symp-
toms impair everyday living throughout the lifespan and likely
increase the severity of other symptoms, such as impaired
cognition and social deficits (1–5). In humans, studies have
linked repetitive and inflexible behaviors with corticostriatal
circuits (6–9), where impairments in modulatory function are
hypothesized to exacerbate symptom severity. Rodent dorsal
striatum dysfunction has been linked to aberrant repetitive
behaviors (10–12), including self-injurious overgrooming and
excessive digging.

The dorsal striatum seems homogeneous in its cellular
structure, where a striking 95% of its neurons are GABAergic
(gamma-aminobutyric acidergic) medium spiny neurons
(MSNs), while the other 5% of striatal neurons consist of
various interneuron subtypes (e.g., GABAergic, cholinergic)
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(13–15). One of the larger subpopulations of GABAergic in-
terneurons in the striatum are parvalbumin-positive (PV1) fast-
spiking interneurons (16–18). These interneurons modulate
extrastriatal excitatory input to MSNs, where inhibition from
small populations of PV1 interneurons can downregulate the
activity of large populations of MSNs (19,20).

Most dorsal striatal PV1 interneurons are surrounded by
perineuronal nets (PNNs) (21), specialized extracellular matrix
structures important for plasticity (22–25) and development
(26,27). Recent studies have implicated PNNs and PV1 cells in
neuropsychiatric diseases, including schizophrenia, autism
spectrum disorder, and Alzheimer’s disease (28–31), and mu-
tations in extracellular matrix–related genes have been identi-
fied in genome-wide association studies of humans with
autism spectrum disorder (32,33). These results suggest that
PNNs play an important role in regulating PV1 interneurons
and thereby plasticity and neuropsychiatric symptoms. How-
ever, no studies have investigated whether PNNs in the dorsal
f Biological Psychiatry. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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striatum play a role in excessive repetitive behavior in mouse
models.

We examined the distribution of PNNs in the dorsomedial
striatum (DMS) and dorsolateral striatum (DLS) of 4 mouse
models known to exhibit excessive repetitive behavior—BTBR,
Cntnap22/2, Shank31/2DC, and prenatal exposure to valproic
acid (VPA)—and found consistent increases in the percentage
of PV1 interneurons surrounded by PNNs in the DMS
compared with control mice, raising the possibility that this
increase restricts plasticity. To test this hypothesis, we inves-
tigated multiple plasticity measures in the DMS of BTBR and
healthy control mice. DMS MSNs showed reduced dendritic
spines and enhanced inhibitory presynaptic strength ex vivo in
BTBR mice compared with healthy control mice, as well as
altered in vivo neuronal oscillations linked to PV1 interneurons
recorded during grooming and digging behavior. These results
suggest that PNNs surrounding PV1 interneurons may disrupt
inhibitory signaling in BTBR mice. To test this, we degraded
DMS PNNs in BTBR mice and found that this manipulation was
sufficient to restore control levels of MSN dendritic spines,
alter inhibitory transmission, and partially rescue excessive
grooming and digging behavior. Together, these findings
suggest that the increased percentage of PV1 interneurons
with PNNs may interfere with optimal synaptic plasticity in the
DMS, contributing to maladaptive repetitive behaviors.
METHODS AND MATERIALS

Animals

All animal procedures were conducted in accordance with the
National Institutes of Health guidelines and approved by the
Princeton University Institutional Animal Care and Use Com-
mittee. C57BL/6J mice (strain 000664) and inbred strain BTBR
T1Itpr3tf/J mice (strain 002282) were obtained from The
Jackson Laboratory and used for behavior, histological, and
physiological comparisons. Transgenic mice, Cntnap22/2

(strain 017482) and Shank31/2DC (strain 018398), were used
for histology. VPA-treated mice were genotype C57BL/6J-
Tg(Thy1-GCaMP6f)GP5.3Dkim/J (strain 028280) and used for
histology.

Stereotaxic Surgery

C57BL/6 and BTBR mice were anesthetized with 1% to 2%
isoflurane and placed in a stereotaxic setup (David Kopf In-
struments). A microsyringe and pump (World Precision In-
struments) were used to deliver enzyme, chondroitinase ABC
(chABC) or penicillinase (pnase), to the bilateral DMS. For
in vivo local field potential (LFP) recordings, a tetrode was
implanted in the DMS unilaterally (see Supplemental Methods).
Behavior was quantified 10 days after surgery.

Behavioral Testing

C57BL/6 and BTBR mice were scored for spontaneous
grooming and digging as measures of repetitive behavior. Mice
were placed in a dark open field apparatus inside an empty
operant chamber (Med Associates Inc.) with an overhead video
camera. The day before testing, mice were habituated to the
open field apparatus twice for 5 minutes each. Grooming and
2 Biological Psychiatry: Global Open Science - -, 2021; -:-–- ww
digging tests were 10 minutes each, and order was
counterbalanced.

In Vivo Local Field Potential Recording

Mice were habituated to wearing the 1403 gain wireless head
stage (Triangle Biosystems) in their home cage twice for 5
minute each. Mice were placed in a red-lit open field apparatus
with bedding for 10 minutes with an overhead video camera to
time lock grooming and digging behavior with recording data.
Neural data were transmitted to a wireless receiver and
recorded using NeuroWare software (Triangle Biosystems). All
recordings referenced a silver wire wrapped around the ground
screw implanted in the posterior parietal bone. LFPs were
extracted from each animal’s electrophysiological data using
MATLAB 2016b (The MathWorks, Inc.). Python 3.7 (Python
Software Foundation) was used for all subsequent analyses
and plots of LFP data (see Supplemental Methods).

Slice Electrophysiology

Whole-cell recordings were performed with a Multiclamp 700B
(Molecular Devices) from 300-mm coronal slices through the
DMS. Whole-cell currents were filtered at 1 kHz and digitized
and stored at 20 kHz (Clampex 9; MDS Analytical Technolo-
gies). All experiments were completed within 4 hours after
slices were made to maximize cell viability and consistency.

Miniature inhibitory postsynaptic currents (mIPSCs) were
recorded in the presence of tetrodotoxin (1 mM), d-AP5 (50
mM), and NBQX (20 mM) in the recording artificial cerebrospinal
fluid solution. mIPSC data were analyzed with Stimfit (34) using
a detection threshold of .7 pA. For each cell, a stretch of 250
mIPSCs was analyzed, with data collection beginning 5 to 10
minutes after patching onto each cell. For confirmation that
currents were exclusively inhibitory, picrotoxin (100 mM) was
added to the bath after recordings.

Histology

Mice were transcardially perfused with 4.0% para-
formaldehyde, and brains were dissected and postfixed. His-
tochemistry was carried out on 50-mm-thick free-floating
coronal brain sections incubated in primary antibodies against
PV, choline acetyltransferase, calretinin, neuropeptide Y, glial
fibrillary acid protein, and/or biotinylated lectin Wisteria flori-
bunda agglutinin (WFA) and counterstained with DAPI
(Table S5). For the chABC-behavior experiment, sections were
imaged with a NanoZoomer S60 (Hamamatsu), and all other
sections were imaged with a Zeiss LSM 700 confocal micro-
scope (Carl Zeiss AG).

DiI Labeling

MSN dendritic spine labeling was carried out on 80-mm-thick
coronal brain sections. As previously described (35), individual
sections were labeled with lipophilic membrane DiI-coated
tungsten particles using a Helios Gene Gun system (Bio-Rad
Laboratories) and incubated at 4 �C for 24 hours in 0.1M
phosphate-buffered saline. Sections were then postfixed in
4% paraformaldehyde for 1 hour at room temperature before
imaging.
w.sobp.org/GOS
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Confocal Microscopy

Images were acquired using a Zeiss LSM 700 confocal mi-
croscope. Brain sections for comparison were stained
together; all images were taken with near-identical confocal
settings and were equally sampled to allow for cross-
comparisons. For PV1WFA1, PV1, and WFA1 cell density
analyses, 4 to 6 sections (1:6 series) of the DMS were imaged
(203 with 0.53 zoom; numerical aperture, 0.8) taking z-stacks
at 3.0-mm intervals (approximately 16 optical slices per cell).
For DiI analyses, dendritic secondary and tertiary segments
were imaged (633 with oil at 2.03 zoom; numerical aperture,
1.4) taking z-stacks at 0.2-mm intervals. Slides were coded
before analysis, and the code was not revealed until the
analysis was complete. All images were analyzed using Fiji
(36); https://imagej.nih.gov/ij/.
Statistical Analysis

Statistics used throughout the article include linear mixed-
effects modeling, analyses of variance, t tests, and shuffle
tests, as described in figure legends (see Supplemental
Methods and data tables in Supplement).
Biological Psychiatry:
RESULTS

Mouse Models of Excessive Repetitive Behavior
Have Higher Percentage of PV1 Interneurons With
PNNs in the DMS
Using fluorescent tagged WFA to label PNNs combined with
immunolabeling for PV, we observed PV1WFA1 in-
terneurons throughout the dorsal striatum in 4 mouse
models: BTBR, Cntnap22/2, Shank31/2DC, and VPA-treated
(Figure 1D), each known to exhibit excessive repetitive be-
haviors (37–42). A greater percentage of PV1 interneurons
colocalized with WFA was observed in the DMS for all mouse
models compared with respective age-matched control mice
(BTBR: p = .0204, Cntnap22/2: p = .0195, Shank31/2DC: p =
.0041, VPA: p = .0445) (Figure 1A–C; Table S1). By contrast,
we found no WFA-PV colocalization differences in the DLS
(Figure 1A–C). Similarly, we found no evidence of increased
overall WFA1 cell density in either the DMS or the DLS
(Figure 1E–G; Table S1), with the exception that BTBR mice
had a greater number of WFA1 cells in the DLS compared
with control mice (p = .0186) (Figure 1E). No WFA1 labeling
was found surrounding choline acetyltransferase–positive,
calretinin-positive, or neuropeptide Y–positive interneuron
types in the dorsal striatum (Figure S1A, B), similar to a
previous study (21).
Figure 1. Mouse models with excessive repetitive
behaviors have more DMS PV1 interneurons with
PNNs. (A–C) Histological analysis of WFA1 PNNs
and PV1 interneurons revealed an increase in DMS
percent colocalization compared with control mice in
BTBR mice (p = .0204) (A), Cntnap22/2 mice (p =
.0195) and Shank31/2DC mice (p = .0041) (B), and
VPA-treated mice (p = .0445) (C). No differences
were found in the DLS (A–C). (D) Representative
images of PV1 interneurons (magenta) and WFA1
PNNs (green) in the DMS. White triangles indicate
PV1WFA1 cells. Scale bar = 50 mm. (E–G) No dif-
ferences were found in WFA1 PNN density in DMS
of BTBR mice (E), Cntnap22/2 and Shank31/2DC

mice (F), or VPA mice (G). DLS PNN1 density was
higher in BTBR mice compared with control mice
(p = .0186) (E), but not in Cntnap22/2 and
Shank31/2DC mice (F) or VPA mice (G). PV1
density was lower in the DMS of BTBR (p = .0187) and
VPA (p = .0379) mice compared with respective
control mice, but not in Cntnap22/2 or Shank31/2DC

mice. (H–J) No differences were detected in the DLS
of BTBR mice (H), Cntnap22/2 and Shank31/2DC

mice (I), or VPA-treated mice (J). Data are repre-
sented as mean 6 SEM. See also Figure S1. See
Table S1 for complete statistics. *p , .05. DLS,
dorsolateral striatum; DMS, dorsomedial striatum;
PNN, perineuronal net; PV, parvalbumin; VPA, val-
proic acid; WFA, Wisteria floribunda agglutinin.
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BTBR and VPA-treated mice had fewer PV1 expressing
interneurons in the DMS (BTBR: p = .0187, VPA: p = .0379)
(Figure 1H–J; Table S1). Tyramide amplification of PV1 protein
expression in BTBR mice replicated this difference (p = .0331,
BTBR: 454.47 6 76.97 cells/mm3, control: 996.38 6 107.9
cells/mm3), suggesting that BTBR and VPA-treated mice have
reduced PV1 interneuron densities, not just decreased PV1
protein expression. Overall, when controlling for density dif-
ferences, PV1 interneurons were more likely to be surrounded
by WFA1 labeling in all 4 mouse models compared with
control mice (Figure 1A–C; Table S1).

Excessive Grooming and Digging Behavior Are
Diminished in BTBR Mice by Reducing DMS PNNs

We decided to focus the remainder of our studies on the BTBR
model, an inbred strain, given their robust and replicable
treatment groups. Data are represented as mean 6 SEM. See also Figure S2 a
chondroitinase ABC; DMS, dorsomedial striatum; dpi, days post injection; pna
floribunda agglutinin.

4 Biological Psychiatry: Global Open Science - -, 2021; -:-–- ww
behavior phenotypes and that most psychopathologies with
excessive repetitive behavior manifest as idiopathic. We
characterized grooming and digging behavior in BTBR mice
compared with control mice (Figure 2A), and as expected (43–
45), we found that BTBR mice spent more time grooming (p =
.0222) and engaged in longer grooming bouts (p , .0001)
(Figure S2A; Table S5). BTBR mice also spent more time dig-
ging (p = .0413) and initiated a greater number of digging bouts
(p = .0123) (Figure S2B; Table S5).

To test whether PNNs play a role in high levels of repetitive
behaviors, we used chABC to degrade PNNs in the DMS.
Previous studies have used chABC in various brain regions in
adult mice (29,46–48), where it has transient effects on PNNs.
To characterize the effect of chABC on PNNs in the DMS, we
unilaterally infused chABC in one hemisphere and a control
enzyme, pnase, in the other (Figure S3A). We found an almost
Figure 2. Reducing PNNs in DMS rescues
excessive repetitive behaviors and normalizes
grooming and digging behaviors in BTBR mice. (A)
Mice were habituated to an enclosed open field box
twice for 5 minutes a day before behavioral testing.
The next day mice were tested in both open field
grooming and thick bedding digging paradigm (order
counterbalanced). (B) BTBR mice showed elevated
time spent grooming compared with control mice
(p = .0293) and longer time spent grooming per bout
(p = .0202). (C) BTBR mice showed greater time
spent digging compared with control mice (p ,

.0001) and longer time spent digging per bout (p ,

.0001). (D) Experiment timeline of behavior pre-
injection, stereotaxic surgery, behavior post-
injection, and tissue collection for histology. (E)
Mean change (D) in time spent grooming from pre- to
postinjection per mouse. Negative values depict a
decrease in time spent, and positive values depict an
increase in time spent, where means near zero
(dashed line) represent no change in behavior from
pre- to postinjection. BTBR-chABC mice show de-
creases in grooming (D291.44 6 25.43 seconds), a
significant change compared with the control group
(p = .0036). (F, I) Graphical representation of the
mean bout duration from pre- to postinjection. (G) 10
dpi of chABC in the DMS normalized BTBR groom-
ing bout duration (3.73 6 0.36 seconds), comparable
to C57BL/6 mice (3.11 6 0.39 seconds), while 10 dpi
of pnase in BTBR mice maintained prolonged
grooming bouts (8.00 6 0.66 seconds) (p = .0014).
(H) Mean D in time spent digging from pre- to
postinjection shows a decrease in BTBR-chABC
mice (D262.36 6 32.88 seconds), a significant
change compared with control mice (p = .0295). (J)
10 dpi of chABC in the DMS of BTBR mice normal-
ized digging bout duration (4.81 6 0.74 seconds),
comparable to C57BL/6 mice (4.22 6 0.54 seconds).
(K) Histological analysis of DMS WFA1 labeled
PNNs confirms reduction in the percent of PV1 in-
terneurons positive for PNNs in BTBR-chABC mice.
BTBR-pnase mice show an increase in percent of
PV1 interneurons positive for PNNs compared with
C57BL/6-pnase mice (p = .023), (L) with no differ-
ences in overall WFA1 cell density. (M) PV1 density
was lower in BTBR mice compared with control mice
in both chABC (p = .0009) and pnase (p = .0028)

nd S3. See Table S2 for complete statistics. *p , .05; #p , .075. chABC,
se, penicillinase; PNN, perineuronal net; PV, parvalbumin; WFA, Wisteria

w.sobp.org/GOS

http://www.sobp.org/GOS


PNNs in the DMS Are Associated With Repetitive Behavior
Biological
Psychiatry:
GOS
complete degradation of PNNs in the DMS at 4 days post in-
jection (dpi), approximately 60% regrowth at 7 dpi, and com-
plete recovery by 21 dpi (Figure S3B, D), with no effect on PV1
interneuron expression (Figure S3C). Based on these results,
we selected a 10 dpi time point as a time when BTBR PV1
PNN1 colocalization would be most similar to control-like
levels.

Before chABC injection, we obtained baseline levels of
grooming and digging in BTBR and control mice. BTBR mice
spent more time grooming (p = .0293) and had longer
grooming bouts (p = .0202) (Figure 2B; Table S2). BTBR mice
also spent more time digging (p , .0001) and had longer
digging bouts (p , .0001) (Figure 2C; Table S2). These mice
were then randomly assigned to groups receiving bilateral
DMS injections of either chABC or control enzyme pnase.

At 10 dpi, grooming and digging behaviors were quantified
again (Figure 2D). Diminishing PNNs in the DMS of BTBR mice
significantly reduced their time spent grooming compared with
grooming behavior before chABC injection (p = .007)
(Figure 2E; Table S2). Grooming behavior was not statistically
different in control mice treated with either chABC or pnase
and in BTBR mice treated with pnase (Figure 2E). Diminishing
PNNs in the DMS of BTBR mice also reduced their time spent
grooming within a bout so that this behavior was not statisti-
cally different from control groups (Figure 2F, G; Table S2).
BTBR mice with DMS injection of pnase maintained high
amounts of grooming bout time before and after injection,
while control mice treated with chABC showed no significant
differences (Figure 2E–G; Table S2). Similarly, chABC treat-
ment of BTBR mice reduced their time spent digging from pre-
to postinjection compared with control groups (Figure 2H, I;
Table S2) and reduced their time spent digging within a bout so
that their behavior was not statistically different from control
mice (Figure 2J; Table S2). Altogether, DMS injection of chABC
reduced BTBR grooming and digging behavior to levels
comparable to control mice.

To assess chABC and pnase effects on PV1 interneurons
and WFA1 PNNs in the DMS, we analyzed PNN levels using
WFA. At 10 dpi, pnase-injected BTBR mice showed a higher
percentage of PV1 interneurons with WFA labeling compared
with pnase-injected control mice (p = .0235), whereas chABC-
injected BTBR mice showed no difference compared with
chABC-injected control mice (p = .359) (Figure 2K; Table S2).
No differences were seen when analyzing WFA1 cell density
(Figure 2L; Table S2). Similar to our previous results, BTBR
mice showed significantly lower PV1 cell density compared
with control mice in both chABC-treated (p = .0093) and
pnase-treated (p = .0028) groups (Figure 2M; Table S2).

BTBR Mice Show Atypical Neuronal Oscillations,
Inhibitory Signaling, and Dendritic Spines in the
DMS

Patterns of oscillatory activity in the striatum have been hy-
pothesized to arise from rhythmic firing of PV1 cells and have
been linked to voluntary striatum-dependent behaviors (49,50).
During freely moving behavior sessions, we recorded LFPs
from the DMS of BTBR and control mice (Figure 3A). LFP re-
cordings were time-locked to analyze LFPs just before the
initiation of, during the course of, or just before termination of a
Biological Psychiatry:
grooming or digging bout. For both grooming and digging, we
found differences in LFP power (mV2/Hz) during the pre-event
period. Before the initiation of grooming, BTBR mice showed
higher LFP power within the theta frequency band (4–12 Hz) (p
# .001) compared with control mice (Figure 3B; Table S3),
while prior to the initiation of digging, LFP power in the low
(30–80 Hz) and high (.80 Hz) gamma frequencies was higher
in BTBR mice (p # .01) (Figure 3E; Table S3). During grooming,
BTBR mice again showed higher theta power (p# .001) as well
as lower gamma power (30–80 Hz) (p # .01) compared with
control mice (Figure 3C; Table S3). Toward the end of the
grooming event, this pattern persisted, with BTBR mice
showing higher theta power (p # .01) and lower gamma power
(p # .001) compared with control mice (Figure 3D; Table S3).
These differences were not observed throughout the digging
events, perhaps reflecting differences in the degree to which
grooming and digging are purposeful behaviors (Figure 3F, G;
Table S3). Our LFP observations in combination with our PNN
and chABC data suggest a potential role for PV1 PNN1 in-
terneurons in modulating excessive grooming by altering
oscillatory behavior.

PV1 cells provide an important source of inhibition onto
MSNs in the dorsal striatum, so we used slice electrophysi-
ology to investigate inhibitory transmission onto DMS MSNs of
BTBR and control mice (Figure 3H). We recorded mIPSCs at
presumed MSNs in unoperated untested mice to determine
whether differences exist in inhibitory synaptic input and
strength. Comparison of overall mIPSC mean frequencies (Hz),
a measure indicative of inhibitory presynaptic strength, yielded
no differences between groups (Figure 3I; Table S3). However,
comparison of mIPSC mean amplitudes (pA), a measure
indicative of inhibitory postsynaptic strength, revealed a sig-
nificant difference between BTBR and control mice. BTBR
mice showed an increase in mean amplitude of mIPSC events
relative to control mice (Figure 3J; Table S3). This effect may
be mediated by increases in frequency of high-amplitude (.60
pA) events (Figure 3K). These higher amplitudes are thought to
be representative of events proximal to the soma, a location
where PV1 interneurons synapse onto MSNs (19,51). Our
mIPSC observations in the BTBR model suggest the presence
of particularly strong inhibitory responses at MSNs not seen in
control mice.

In addition to receiving inhibitory input, the DMS has been
shown to integrate a heterogeneous set of inputs from pre-
frontal cortex, premotor cortex, and thalamus (52), where
MSNs receive specific excitatory inputs from these extra-
striatal regions onto dendritic spines (53,54). Using lipophilic
DiI labeling, we examined MSN dendritic spine density in BTBR
and control mice (Figure 3L) and found fewer spines on sec-
ondary and tertiary dendrites of MSNs in the DMS (p = .0048),
but not the DLS, of BTBR mice (Figure 3M; Table S3).

Reducing DMS PNNs of BTBR Mice Increases
Inhibition and Eliminates Dendritic Spine
Differences

To understand how reducing PNNs may affect inhibitory syn-
aptic strength in BTBR and control mice, we recorded mIPSCs
from MSNs after chABC injection (Figure 4B). Given differ-
ences in percentage of PV1 cells with PNNs between BTBR
Global Open Science - -, 2021; -:-–- www.sobp.org/GOS 5
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event period (F), and end of event period (G). Gray bars indicate significant differences in power (A.U.) across frequency (Hz): light gray (p# .01); dark gray (p#

.001). (H) Example depiction and traces of whole-cell, mIPSC recordings from putative MSNs of a C57BL/6 (top, gray) and a BTBR (bottom, green) mouse.
Scale bar = 40 pA (y-axis) by 2 seconds (x-axis). (I) mIPSC frequency (Hz) analysis of C57BL/6 (gray) and BTBR (green) mice data from DMS slice preparations
yields no differences in mean frequencies. (J) Significant effect in amplitude (pA) of mIPSC events shows increased mean amplitudes in BTBR mice compared
with C57BL/6 mice (p = .0335). (K) Bar graph of mean frequency by amplitude depicts the increased frequency of events at amplitudes .60 pA in BTBR mice.
(L) Representative images of MSN cell (left panel) and dendritic segments (DiI, red) in the DMS from a control (top right panel) and BTBR (bottom right panel)
mouse. Scale bar = 5 mm. (M) Spine density differences between C57BL/6 and BTBR mice were observed in the DMS (p = .0048), but not in the DLS. Data are
represented as mean 6 SEM. See Table S3 for complete statistics. *p , .05. Amp., amplitude; A.U., arbitrary units; DLS, dorsolateral striatum; DMS, dor-
somedial striatum; Freq, frequency; GFAP, glial fibrillary acid protein; mIPSC, miniature inhibitory postsynaptic current; MSN, medium spiny neuron.
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and control mice, we hypothesized that chABC may affect
BTBR mice differently from controls. Mice were injected
bilaterally with chABC into the DMS; then 10 dpi, brain slices
were collected for mIPSC measurements at presumed MSNs
(Figure 4A). When comparing mIPSC mean frequencies across
BTBR mice and control mice 10 days following chABC, we
found a significant overall increase in event frequency in BTBR
mice (p = .00126) (Figure 4C; Table S4), indicative of a
strengthening of presynaptic inhibition. Elevated mIPSC am-
plitudes in BTBR mice compared with control mice persisted
following chABC treatment (p = .0146) (Figure 4D; Table S4).
Cumulative probability curves and frequency distributions of
the mIPSC amplitude data show increased frequency in BTBR
6 Biological Psychiatry: Global Open Science - -, 2021; -:-–- ww
mice relative to control mice across all amplitude bins
(Figure 4D, E), suggesting an increase in inhibitory presynaptic
strength that may not be specific to distal or proximal inputs.
Overall, these findings suggest that chABC increases inhibitory
transmission in BTBR mice compared with control mice,
possibly through a widespread, nonspecific enhancement of
presynaptic strength.

To investigate whether reducing PNNs affects excitatory
input onto MSNs, we examined MSN dendritic spine density in
BTBR and control mice at 10 dpi of chABC and pnase. We
found no differences between BTBR and control mice or be-
tween chABC and pnase, although the surgery itself seems to
have elevated dendritic spine density (Figure 4F, G; Table S4).
w.sobp.org/GOS
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Figure 4. Reducing perineuronal nets alters
inhibitory synaptic strength at DMS MSNs and nor-
malizes dendritic spine density. (A) Mice were
injected bilaterally with chABC in the DMS and lived
in their home cage for 10 dpi, and subsequently
tissue was collected for slice electrophysiology. (B)
Example traces of whole-cell, mIPSC recordings
from putative MSNs of a C57BL/6 (left, dark gray)
and a BTBR (right, dark green) mouse, 10 dpi of
chABC. Scale bar = 40 pA (y-axis) by 2 seconds (x-
axis). (C) mIPSC frequency (Hz) analysis of C57BL/6
and BTBR mice10 dpi of chABC data from DMS slice
preparations shows different effects of chABC on
C57BL/6 and BTBR mice (p = .00126). (D) Significant
effect in amplitude (pA) of mIPSC events shows
increased mean amplitudes in BTBR mice compared
with C57BL/6 mice (p = .0146). (E) Bar graph of
mean frequency by amplitude depicts the overall
increased frequency of events across amplitudes
.20 pA in BTBR mice. (F) Representative images of
MSN dendritic segments (DiI, red) in the DMS from
C57BL/6 mice (top panels), 10 dpi of pnase (top left
panel) and 10 dpi of chABC (top right panel) and
BTBR mice (bottom panels), 10 dpi of pnase (bottom
left panel) and 10 dpi of chABC (bottom right panel).
Scale bar = 5 mm. (G) Comparison of DMS MSN
spine density yields no differences across all groups.
Data are represented as mean 6 SEM. See Table S4
for complete statistics. *p , .05. Amp. amplitude;
chABC, chondroitinase ABC; DMS, dorsomedial
striatum; dpi, days post injection; Freq, frequency;
mIPSC, miniature inhibitory postsynaptic current;
MSN, medium spiny neuron; pnase, penicillinase.
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DISCUSSION

Our findings show 4 mouse models that exhibit excessive re-
petitive behavior, namely, BTBR, Cntnap22/2, Shank3, and
VPA-treated, have a higher percentage of PV1 interneurons
with PNNs in the DMS than control mice. Our data also show
Biological Psychiatry:
altered theta and gamma oscillations (rhythmic firing linked to
PV1 cells) during grooming in theDMSof BTBRmice compared
with control mice. We also found evidence for increased inhib-
itory postsynaptic strength on presumed MSNs, the primary
target of PV1 cells in the striatum, as well as reduced MSN
dendritic spine density in BTBR DMS compared with control
Global Open Science - -, 2021; -:-–- www.sobp.org/GOS 7
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DMS. Diminishing DMS PNNs in BTBR mice reduced both
grooming and digging behavior, supporting our hypothesis that
PNNs contribute to excessive repetitive behavior. BTBR mice
with reduced DMS PNNs showed an unexpected increase in
presynaptic inhibition, suggesting that the reduction in repeti-
tive behavior with diminished DMS PNNs is not the result of a
normalization of inhibitory responses, but instead a possible
shift in inhibitory processing in the dorsal striatal circuitry.

PNNs consist of chondroitin sulfate proteoglycans (55–59)
and are known to regulate plasticity (30,31,60). Our observed
increase in percentage of PV1 cells with PNNs inmousemodels
of excessive repetitive behaviors is consistent with the pro-
posed role that PNNsmodulate inhibitory plasticity. PNNs in the
mouse visual cortex are associated with increased firing of PV1
inhibitory interneurons (61) and have been linked to neuronal
oscillations in other brain regions (62–64), suggesting that they
play a role in modulating coordinated network activity. Our re-
sults suggest that abnormal PV1 PNNs in the DMS contribute
to altered neuronal oscillations, specifically within the theta
frequency. PV1 interneurons in the striatum are known to fire in
synchrony (65–67), and evidence suggests that neuronal syn-
chrony in the striatum is important for healthy function. In the
healthy rodent striatum, theta power is associated with volun-
tary behavior and does not appear to be associated with
grooming (49). In pathological states, however, altered theta
and gamma power have been linked to overgrooming (68,69),
raising the possibility that the increased oscillations in the theta
range we observed in BTBR mice may be causally linked to
excessive grooming. Along these lines, high theta power has
been observed in humans with obsessive-compulsive disorder
and trichotillomania (70–74), both conditions defined by
dysfunctional repetitive behavior. Future studies should inves-
tigate whether reducing the percentage of PV1 cells with PNNs
would normalize DMS oscillations in BTBR mice.

Inhibitory input from small numbers of PV1 interneurons is
sufficient to block firing in large numbers of MSNs (20).
Therefore, we examined whether PV1 PNNs may impact
inhibitory responses of DMS MSNs. We found that DMS MSNs
are atypical in BTBR mice, exhibiting fewer dendritic spines in
combination with electrophysiological changes that suggest
higher inhibitory postsynaptic responses compared with con-
trol mice. Given this information, we hypothesized that
concomitant decreases in excitatory synapses and increases
in inhibitory transmission on DMS MSNs in BTBR mice
contribute to excessive grooming and digging.

To extend our understanding of how PNNs might affect DMS
MSNs in BTBR mice, mIPSCs were recorded from striatal slices
at baseline and after reducing DMS PNNs with chABC. Given
that reducing PNNs in BTBR mice eliminated excessive repetitive
behaviors, we expected to find baseline differences between
BTBR and control mice in mIPSC measures that would be
sensitive to PNN reduction. Baseline data suggested an increase
in BTBR spontaneous GABA release onto putative MSN cell
bodies, as well as potentially more inhibitory postsynaptic re-
ceptors on MSNs. This difference was not corrected after chABC
treatment, and instead degrading PNNs resulted in an unex-
pected increase in inhibitory presynaptic strength in BTBR MSNs
compared with control MSNs. Similarly, a previous study inves-
tigating spontaneous excitatory and inhibitory transmission onto
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CA2 fast-spiking interneurons of control mice, 7 dpi of chABC,
found that reducing PNNs decreased the frequency of excitatory
events and increased the frequency of inhibitory events onto
fast-spiking interneurons (75). In addition, although in our elec-
trophysiology experiments we did not measure excitatory post-
synaptic responses, our dendritic spine results may provide
insight into excitatory synaptic plasticity effects after reducing
PNNs. The changes we observed likely resemble a complex
reorganization of inhibitory circuit strength, perhaps influenced
by other endogenous physiological differences between mouse
strains. While we cannot be certain if this directly reflects mod-
ulation of MSNs by PV1 interneurons, it is possible that
concomitant inhibitory signaling is altered in BTBR mice as a
result of PNN decreases around PV1 interneurons. PNN
reduction increased mIPSC frequency in BTBR mice, in addition
to maintaining increased mIPSC amplitude. While these findings
are surprising given past work showing that PNN degradation
reduces inhibition in several brain regions (76,77), it is important
to note that in the cerebellum where, similar to the striatum,
circuits are predominantly inhibitory, PNN degradation also in-
creases inhibition (78,79).

It is noteworthy that some of the measures we considered
were affected by treatment with the control enzyme, pnase. In
particular, treatment with either pnase or chABC restored
dendritic spine density on MSNs, and some of the behavioral
differences between C57 and BTBR mice were diminished with
pnase treatment. While the exact reason for these unexpected
findings remains unknown, it may be relevant that a growing
number of studies have shown that commonly used anes-
thetics, including isoflurane, can enhance plasticity and
reverse negative stress-induced behavioral outcomes (80,81).
Future studies should investigate this possibility directly.

Recent work suggesting that PV1 cell activity drives the for-
mation of PNNs (82,83) raises the possibility that higher per-
centages of PV1 interneurons with PNNs in the mouse models
we examined are caused by excessive repetitive behavior. While
our chABC data indicate that the converse relationship exists,
both possibilities may occur. That is, a positive feedback loop
may exist whereby high numbers of PV1 interneurons with PNNs
stimulate increased grooming and digging, which in turn rein-
force PNNs surrounding PV1 interneurons, ensuring the
persistence of maladaptive behavior. Collectively, our findings
suggest that an overabundance of PNNs surrounding PV1 in-
terneurons in the DMS may prevent disengagement from re-
petitive behaviors through abnormal inhibitory signaling between
PV1 interneurons and MSNs.
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