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Abstract

In humans, exposure to early life adversity has profound implications for susceptibility 

to developing neuropsychiatric disorders later in life. Studies in rodents have shown that 

stress experienced during early postnatal life can have lasting effects on brain development. 

Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; 

these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other 

steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter 

receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress 

are multifaceted and not yet fully understood. However, studies demonstrating altered levels 

of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in 

both developmental and adult stress paradigms strongly suggest that these molecules may be 

important players in stress effects on brain circuits and behavior. In this review, we discuss 

the influence of developmental and adult stress on various components of the brain, including 

neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining 

an enhanced understanding of how early adversity impacts the intricate systems of brain steroid 

and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for 

stress-related conditions.
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Introduction

The word “hormone” was first used over 100 years ago to describe “the chemical 

messengers which, speeding from cell to cell along the bloodstream, may coordinate the 

activities and growth of different parts of the body” (Starling, 1905). Originating from 

the Greek root hormon, which means “to arouse or excite,” the term was coined to 

describe secretin, a substance derived from the digestive system. As more molecules that 

are produced in the periphery, released into the bloodstream, and act on distant targets were 

discovered and characterized, the term hormone became generally accepted by the scientific 

community. Hormones can be roughly divided into three major biochemical classes: (1) 

steroids; (2) peptides; and (3) amino acid derivatives (Tata, 2005). This review will focus 

only on the first in this list – steroids.

Many of the molecules originally designated as hormones can be produced in non-endocrine 

tissue where they exert local action. This is common in the brain where molecules 

originally designated as hormones are produced by neurons and glia, and have paracrine, 

autocrine, and intracrine functions. This means they can act on cells nearby the synthesizing 

cell, act on the synthesizing cell itself, or act within the synthesizing cell, respectively 

(Rubinow, 2018; Saldanha et al., 2011). Despite compelling evidence for brain synthesis and 

non-endocrine action of these molecules, the widespread adoption of the term hormone 

to describe molecules that have broader mechanisms of action has led to common 

misunderstandings and obstacles to progress in the field. This is particularly true for 

some steroid molecules that were originally discovered as originating from the gonads 

(progestogens, estrogens, androgens) and adrenals (corticosteroids). These molecules were 

first characterized for their roles in reproductive function and stress responses respectively. 

It is now abundantly clear that progestogens, estrogens, androgens, and glucocorticoids can 

be made in the brain where they act on steroid receptors locally (Lloyd-Evans & Waller-

Evans, 2020), or in some cases are further metabolized into neurosteroids that can serve 

as allosteric modulators of neurotransmitter receptors (Wang, 2011). Nonetheless, common 

misperceptions exist due to the original discovery and characterization of these molecules as 

hormones. For example, estradiol is widely considered to be a “female sex hormone” due to 

its peripheral actions, but it is present in much higher concentrations in the brains of adult 

males than females (Hojo & Kawato, 2018). Furthermore, molecules originally associated 

with female reproduction, such as progesterone, are increased in the periphery and brains of 

both males and females in response to stress (Shors et al., 2001; Romeo et al., 2007; Laham 

et al., 2022).

The broad regional synthesis of steroids and their multiple mechanisms of action have 

complicated attempts to understand their roles in stress effects, particularly in the context 

of sex differences. This review attempts to integrate information about peripheral and brain 

concentrations and actions of progestogens, androgens, estrogens, and glucocorticoids, and 

their metabolites (Table 1), in the context of early life stress effects on neurons, glia, and 

the extracellular matrix in the brain. The review focuses primarily on brain regions that 

have been implicated in stress effects and cognitive/emotional processing, including the 

hippocampus (HIP), basolateral amygdala (BLA), and prefrontal cortex (PFC). To set the 
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stage for this endeavor, we start with a brief description of steroid synthesis in the periphery 

and brain.

Sex steroid and glucocorticoid synthesis begins with cholesterol

Progestogens, estrogens, androgens, and corticosteroids are made from cholesterol. 

Cholesterol is produced primarily in the body with a lower percentage coming from the 

diet (Miller & Bose, 2011; Rone et al., 2009). Synthesis of these steroids begins in the 

mitochondria where cholesterol is transported from the outer mitochondrial membrane 

(OMM) to the inner mitochondrial membrane (IMM) by a lipid binding protein called 

steroidogenic acute regulatory protein (StAR) (Miller & Bose, 2011) (Figure 1). Another 

downstream protein to StAR, mitochondrial translocator protein (TSPO), is involved in 

transporting cholesterol from OMM to IMM (Papadopoulos et al., 1997). The mitochondria 

contain important enzymes for steroid synthesis, including P450 side-chain cleavage (P450 

scc) enzymes (Omura, 2006). The first enzymatic step occurs in the IMM where cholesterol 

is converted to pregnenolone by the catalyzing action of a P450 scc enzyme (Koritz & 

Kumar, 1970; Manna et al., 2013; Stocco et al., 2005; Stone & Hechter, 1955).

Pregnenolone can serve as the precursor to many different steroids that have hormonal 

action, including progestogens, estrogens, androgens, and glucocorticoids (Baulieu et al., 

2001) (Figure 2). The presence of relevant enzymes is a main determining factor of whether 

tissue that generates pregnenolone synthesizes bioactive amounts of these other substances. 

On its own, pregnenolone does not exert influence over sex steroid receptors, but it does 

have neurosteroid properties (Vallée et al., 2014) (Figure 2).

Progestogens

In the mitochondria, pregnenolone can be oxidized into progesterone (P4), the main 

progestogen, by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD) (Simard et al., 

2005) (Figure 1). Once synthesized, P4 diffuses across the OMM to the cytosol where it can 

bind to intracellular nuclear progesterone receptors (PRs), diffuse across the cell membrane 

and bind with membrane-associated PRs on other cells, or enter nearby cells to exert its 

action on nuclear PRs. P4 can also enter the endoplasmic reticulum where, depending on the 

presence of specific enzymes, it can be converted into other metabolites, some of which also 

bind to PRs, such as 5α-dihydroprogesterone (DHP) (Eicheler et al.,1994; Guennoun, 2020). 

It should be noted that DHP also binds to GABAA receptors so it works as a steroid and 

neurosteroid (Guennoun, 2020).

Androgens

An alternative biochemical path for progesterone is oxidation to 17-OH progesterone 

and then to the androgen androstenedione by other cytochrome P450 enzymes in the 

endoplasmic reticulum (Fevold et al., 1989; Giatti et al., 2020). Androstenedione can be 

converted to testosterone by the enzyme 17β-hydroxysteroid dehydrogenase (17β-HSD).

Testosterone is reduced to 5α-dihydrotestosterone (5α-DHT) by the action of 5α-reductase 

(Jin & Penning, 2001). Androstenedione, testosterone and DHT can bind to either nuclear 
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androgen receptors (ARs), which serve as transcription factors and alter gene expression, 

or membrane-associated androgen receptors, which activate G proteins and alter second 

messenger cascades (Hiipakka & Liao, 1998; Zucker et al.,1996).

Estrogens

Progesterone-derived androstenedione can be converted to the estrogen estrone by the 

enzyme P450 aro and then to estradiol, the most prevalent estrogen in mammals, by 

the enzyme 17β-HSD (Osawa et al., 1993). Estradiol can also be synthesized by the 

aromatization of testosterone also through P450 aro (MacLusky et al., 1994). Both of these 

biochemical reactions occur in the endoplasmic reticulum. Estrogen receptors (ERs) include 

those that are nuclear, whose activation alters gene expression, or membrane-associated, 

whose activation alters G protein signaling cascades (McEwen, 2002).

Glucocorticoids

An additional biochemical pathway for progesterone is its conversion to deoxycorticosterone 

(DOC) by the enzyme 21-hydroxylase. Next, DOC can be converted to corticosterone, the 

main rodent glucocorticoid, by the action of the enzyme 11β-hydroxylase. In primates and 

many other nonrodent mammals, the enzyme 17-α hydroxylase, which rodents lack (Raff, 

2016), enables the production of 17α-hydroxyprogesterone, a substrate that is converted 

to cortisol by 21-hydroxylase and 11β-hydroxylase (Porcu et al., 2016; Van Belle, 2017). 

The steroids involved in both of these pathways have been shown to bind to both nuclear 

and membrane-associated glucocorticoid receptors (GRs) with the former altering gene 

expression and the latter activating G-protein coupled signaling cascades (Heitzer et al., 

2007).

Determining factors of sex steroid and glucocorticoid synthesis

There are many similarities among the biochemical pathways involved in the synthesis of 

progestogens, androgens, estrogens, and glucocorticoids. First, all of the relevant steroids 

derive from the same precursor molecule, pregnenolone (Figure 2). Second, androgens, 

estrogens, and glucocorticoids all derive from progesterone. Third, many of the biochemical 

pathways use the same enzymes, with different products arising from the action on 

different substrates. For example, 17β-HSD can convert estrone to estradiol as well as 

androstenedione to testosterone (Fevold et al., 1989).

Given the shared biochemical pathways, it is not surprising that most tissues that synthesize 

one type of these steroids also synthesize the others, albeit at different concentrations. For 

example, the adrenal glands, the testes, the ovaries, and the brain all produce progestogens, 

androgens, estrogens, and glucocorticoids (Dufau et al., 1971; Holst et al.,2004; Nelson 

& Bulun, 2001; Rosol et al.,2001). Differential concentrations of these steroids in specific 

tissues depend on both the expression of specific enzymes as well as on the concentration of 

specific substrates.

Not surprisingly given their shared biochemical pathways, these molecules also have similar 

molecular structures (Figure 2). The molecular similarity of many of these steroids confers 
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cross-steroid receptor ligand status to several of them. For example, progesterone binds 

to PRs with highest affinity, but it also binds to GRs (Beato et al., 1995; Kontula et al., 

1983), and testosterone binds with highest affinity to ARs, but it also binds to PRs and 

ERs (Chang et al., 1995; Rochefort & Garcia, 1976). These features make it difficult to 

find agonists and antagonists of these receptors that are specific. For example, mifepristone, 

a well-known PR antagonist, is also a potent GR antagonist (Im & Appleman, 2010). In 

addition to the complex interactions of sex steroids and glucocorticoids with their receptors, 

these molecules exert action in the brain through their conversion to neurosteroids.

Sex steroids and glucocorticoids can be converted to neurosteroids

Neurosteroids are steroids synthesized in the central nervous system by both neurons 

and glial cells (Baulieu, et al., 2001). Neurosteroids are different from sex steroids and 

glucocorticoids in that they exert their effects by binding to neurotransmitter receptors as 

opposed to nuclear or membrane bound-steroid receptors (Mellon & Griffin, 2002; Penning 

et al., 2004; Schverer et al., 2018). In addition to serving as a precursor to progesterone, 

androgens, estrogens, and glucocorticoids, pregnenolone itself can act as a neurosteroid 

by binding to endocannabinoid receptors where it acts as an allosteric inhibitor (Vallée 

et al., 2014). Progesterone, androgens, and glucocorticoids can also all be converted to 

neurosteroids that bind to GABA receptors (Reddy & Jian, 2010).

As mentioned above, progesterone can be metabolized to DHP by the action of 5α-

reductase. DHP is then converted to 3α, 5α tetrahydroprogesterone (3α, 5α-THP), or 

allopregnanolone, in the presence of the enzyme 3α-HSD (Penning et al., 2004). When 

acting on testosterone, 5α-reductase produces DHT, which is further converted to the 

neurosteroid 3α-androstanediol (3α-diol) in the presence of 3α-HSD (Jin & Penning, 

2001). The glucocorticoid deoxycorticosterone is reduced to dihydrodeoxycorticosterone 

(DHDOC) by the action of 5α-reductase and then the enzyme 3α-HSD converts it 

to the neurosteroid tetrahydrodeoxycorticosterone (THDOC) (Purdy et al., 1991). Thus, 

allopregnanolone, 3α-diol, and THDOC are all produced by the action of the same enzymes 

(5α-reductase and 3α-HSD) with the specific end products determined by whether the 

substrates are progestogens, androgens, or glucocorticoids. DHP, allopregnanolone, 3α-diol, 

and THDOC have very similar biological actions as positive allosteric modulators of 

GABAA receptors (Crawley et al., 1986; Guennoun, 2020; Puia et al., 2003; Reddy & Jian, 

2010). GABAA receptors are ligand-gated chloride channels whose activation inhibits cells. 

Accordingly, these neurosteroids have been shown to inhibit cells with GABAA receptors 

(Wang, 2011). Allopregnanolone has been most extensively studied and shown to bind 

to GABAA receptors with delta (δ) subunits, which are the most common extrasynaptic 

receptors, whose activation increases tonic inhibition (Belelli et al., 2002; Stell et al., 2003).

Like steroid synthesis within neurons and glia, the synthesis of neurosteroids occurs in 

the mitochondria (Miller & Bose, 2011). Studies have shown that many cells in the brain 

are equipped with the enzymes necessary to convert cholesterol or peripheral steroids 

to neurosteroids (Kimoto et al., 2001), including neurons and glia of the neocortex, 

hippocampus, amygdala, thalamus and olfactory regions (Agís-Balboa et al., 2006).
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Sex differences in brain synthesis and levels of steroids and neurosteroids

There are obvious sex differences in the peripheral levels of sex steroids and glucocorticoids 

in both rodents and primates. Female rodents have higher peripheral levels of progestogens, 

estrogens, and glucocorticoids than males while males have higher peripheral levels of 

androgens (Nelson & Bulun, 2001; Tyagi et al., 2017). Despite these clear differences and 

the ease with which these molecules can cross the blood brain barrier, brain concentrations 

often do not reflect patterns in the periphery in part because of the presence of binding 

globulins in the blood. A good example of this is the female > male sex difference in 

peripheral glucocorticoids in rodents, which does not appear to exist in humans (Bangasser 

& Wicks, 2017; Moisan, 2021; Reschke-Hernández et al., 2017). The exact reason for 

the species difference in whether males and females exhibit different levels of peripheral 

glucocorticoids remains unclear, although it is possible that there are sex differences in 

the regulation of adrenal steroids in rodents that do not exist in humans. Nonetheless, the 

peripheral sex difference in rodents does not correspond to a similar sex difference in brain 

glucocorticoid concentrations because females have more corticosteroid binding globulin 

than males, which limits glucocorticoid access to the brain (Mataradze et al., 1992). Thus, 

the functional consequences of this rodent sex difference remain unclear.

Another reason that brain concentrations do not reflect peripheral sex differences is brain 

region-specific expression of enzymes that convert peripherally synthesized steroids into 

other molecules. Perhaps the best example of this is the sex difference in peripheral estradiol 

levels in rodents, which is reversed in the brain. Adult female rats and mice have higher 

levels of circulating estradiol than males, but because of the presence of aromatase in the 

brain as well as high concentrations of the main substrate of aromatase, testosterone, males 

have higher concentrations of estradiol in some brain regions (Amateau et al., 2004; Gillies 

& McArthur, 2010; Hokenson et al., 2022). Taken together, these findings emphasize the 

need to examine brain concentrations of bioactive molecules directly, rather than inferring 

their relative concentrations by extrapolating from peripheral levels.

With regard to brain concentrations of sex steroids and glucocorticoids, studies have shown 

that baseline progestogen levels are higher in female than male rodent brains (Meffre et al., 

2007; Pesaresi et al., 2010; Sze et al., 2018). Conversely, baseline androgen concentrations, 

like estradiol levels, are higher in male than female rodent brains (Hojo & Kawato, 

2018; Pesaresi et al., 2010; Sze et al., 2018). By contrast, no baseline differences in 

brain glucocorticoid concentrations exist between the sexes. The relative concentrations 

of neurosteroids more closely reflect the concentrations of their precursors, in that female 

> male sex differences in progesterone parallel those of allopregnanolone (Meffre et al., 

2007), while male > female sex differences in testosterone parallel those in 3α-diol. In 

female rodents, the estrous cycle produces fluctuating changes in peripheral progesterone. 

These estrous cycle differences in progesterone parallel differences in allopregnanolone 

concentrations with higher levels of during diestrus (Caruso et al., 2010; Laham et al., 

2022). Collectively, these findings suggest that brain concentrations of neurosteroids are 

dependent on both steroid concentrations in the periphery and the presence of enzymes 

necessary for the production of neurosteroid precursors or neurosteroids themselves.
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Impact of stress on sex steroid, glucocorticoid, and neurosteroid levels

Steroid and neurosteroid levels across brain regions fluctuate dynamically in response to 

different conditions such as stress (Purdy et al., 1991; Barbaccia, 2004). In addition to the 

baseline differences in neuroactive steroids as described above, sex-specific differences in 

steroid and neurosteroid levels have been observed in response to stress.

Exposure to adverse conditions during early life alters levels of sex steroids, glucocorticoids, 

and neurosteroids in rodents and humans (Figure 3). For example, male rats reared under 

limited bedding and nesting conditions show increased serum estradiol levels (Eck et al., 

2022; 2019). Maternal separation leads to decreased testosterone levels in serum of male 

mice (Miyaso et al., 2021; Tsuda et al., 2011).

Maternal separation with early weaning has been shown to increase serum and brain 

concentrations of progesterone in diestrus female mice (Laham et al., 2022). Along with 

these increases in progesterone levels, allopregnanolone levels are lower (Laham et al., 

2022). Changes in the expression of enzymes associated with steroid and neurosteroid 

synthesis have been reported in response to both prenatal and early postnatal stress 

in rodents. Juvenile offspring of rat dams exposed to restraint during late gestation 

showed decreased conversion of progesterone to 5α-reduced metabolites such as DHP 

and allopregnanolone in the medial prefrontal cortex (mPFC) (Paris & Frye, 2011b). A 

reduction in allopregnanolone was noted in the hippocampus of female offspring of rat dams 

exposed to immune challenge during the late gestation period (Paris et al., 2011). Frye et al. 

(2010) reported that male rat offspring of dams exposed to prenatal stress show increased 

corticosterone levels, decreased 3α-diol concentration, and decreased hippocampal DHT 

levels accompanied by increased avoidance behavior. Similarly, gestational and acute 

restraint stress decreased hippocampal 3α-diol levels and increased avoidance behavior 

(Walf & Frye, 2012). Our laboratory has found that female diestrus mice subjected 

to maternal separation and early weaning have reduced levels of 5α-reductase in the 

ventral hippocampus, which likely contributes to the elevated ratio of progesterone to 

allopregnanolone (Laham et al., 2022). Similarly, male juvenile mice reared in isolation 

have lower expression of 5α-reductase in the mPFC and nucleus accumbens and reduced 

allopregnanolone and THDOC in the frontal cortex (Bortolato et al., 2011). Postweaning 

social isolation has also been shown to result in a downregulation of cortical and plasma 

concentrations of allopregnanolone, This was also associated with increased avoidance 

behavior (Serra et al., 2005; Serra et at., 2000). These studies indicate a dysregulation in 

neurosteroid synthesis in rodent models of developmental stress (Table 2). Although it is 

difficult to draw connections between studies done in rodents and the human condition, it 

seems relevant to note that childhood Holocaust survivors have diminished serum levels of 

5α- reductase (Yehuda et al., 2009).

In adulthood, acute stress increases the levels of certain steroids in rodents, including 

progesterone, testosterone, estrogen, and corticosterone/cortisol, in both the periphery and 

brain (López-Calderón et al., 1990; Romeo et al., 2007; Shors et al., 1999). Stress increases 

levels of these steroids, as well as their neurosteroid derivatives, in males and females, 

with increases in allopregnanolone being greater in the frontal cortex, amygdala and 
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brainstem in females. A significant increase in allopregnanolone was only noted in the 

frontal cortex in stress-induced male rats (Sze et al., 2018). Studies indicate that plasma 

and brain levels of THDOC and allopregnanolone rapidly increase in rats exposed to 

acute stress (Reddy & Rogawski, 2002). Vallée et al. (2000) quantified the neurosteroid 

concentration in rat plasma and brain following forced swim stress and reported a significant 

elevation in allopregnanolone and pregnenolone levels. Peak brain and plasma levels of 

allopregnanolone and THDOC are noted in rats exposed to acute stressors such as cold swim 

stress, foot shock, or carbon dioxide exposure (Barbaccia et al., 1996, 1997). Similarly, 

other studies have shown a 4–20 fold rapid elevation in THDOC and allopregnanolone in 

the rodent cortex and hypothalamus following exposure to acute swim test (Purdy et al., 

1991). Investigators have reported a reduction in avoidance behavior in response to the 

administration of allopregnanolone and THDOC in rodents (Bitran et al., 1991; Wieland et 

al., 1991). Studies suggest that this increase in the levels of allopregnanolone is a potential 

homeostatic mechanism, to increase the GABAA receptor threshold and promote stress 

resistance in response to acute challenges (Shirayama et al., 2011; Yoshizawa et al., 2017). 

Blockade of allopregnanolone production in response to acute stress using finasteride, a 

5α-reductase inhibitor, decreases sensorimotor gating index in response to acute stress, an 

effect observed in several neuropsychiatric disorders (Pallarès et al., 2015).

Also in adulthood, chronic stress alters levels of peripheral sex steroids and glucocorticoids. 

Studies have shown that chronic stress elevates serum levels of progesterone and 

glucocorticoids in male and female rodents, while decreasing levels of testosterone and 

estradiol in rats and mice (Gao et al., 2020; Retana-Márquez et al., 2003). Studies have 

also shown that chronic stress-induced changes in peripheral steroid levels do not always 

parallel changes in neurosteroid concentrations. Indeed, adult male mice exposed to a 

social isolation paradigm, show a reduction in 5α-reductase activity, which produces 

decreased allopregnanolone levels in the frontal cortex and olfactory bulb. These findings 

were not observed in female mice (Dong et al., 2001; Pinna et al., 2004). The available 

evidence suggests that compensatory mechanisms exist in the brain to mitigate peripheral 

changes in steroid levels after acute stress. These mechanisms appear to be diminished 

after chronic stress, possibly through a downregulation of enzymes that convert steroids to 

neurosteroids with buffering action on avoidance behavior (Table 2). In humans, individuals 

with neuropsychiatric disease associated with stress, including posttraumatic stress disorder 

and major depressive disorder, have lower levels of serum 5α-reductase (Agis-Balboa et 

al., 2014), which likely influences levels of neurosteroids, as some studies have suggested 

(Römer et al., 2010; Römer & Gass, 2010).

Impact of stress on neurons: involvement of steroids and neurosteroids

Stress is known to have profound effects on neuronal excitability, biochemistry, and 

structure, some of which are mediated by stress-induced changes in steroids and 

neurosteroids. The most obvious steroids to be implicated in stress effects on neurons 

are glucocorticoids, also known as stress hormones. A large literature has shown that 

developmental stress influences neurotransmission, gene expression, dendritic architecture, 

and postnatal neurogenesis (De Kloet et al., 1996; McEwen et al., 2016; Mirescu et 

al., 2004; Monroy et al., 2010). For example, prenatal and postnatal stress, as well as 
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chronic stress in adulthood, result in atrophied apical dendrites of CA3 pyramidal cells and 

diminished hippocampal, but not prefrontal or hypothalamic, synaptic markers in rodents 

(Liu et al., 2016; Paris & Frye, 2011a; Watanabe et al., 1992). Some of these effects have 

been attributed to changes in glucocorticoids (De Kloet et al., 1996; McEwen et al., 2016; 

Mirescu et al., 2004) and others are very similar to what has been observed with chronic 

stress in adulthood, where a causal link with glucocorticoids has been established (Horchar 

& Wohleb, 2019; Kvarta et al., 2015) (Table 3). However, it should be emphasized that 

elevated glucocorticoid levels do not explain many of the persistent effects of early life 

adversity as well as those of stress in adulthood (Faturi et al., 2010; Kim et al., 2015).

In addition to glucocorticoids, other steroids known to be altered by developmental stress, 

as well as acute and chronic adult stress, influence neurons and as such, may contribute 

to stress responses. For example, estrogen and progesterone, which are both elevated in 

response to postnatal and acute adult stress in rodents (Paris & Frye, 2011a, 2011b; Shors 

et al., 1999), are known to increase dendritic spine density in the hippocampus (Gould et 

al., 1990; Woolley et al., 1990). Allopregnanolone has a similar effect to progesterone of 

increasing dendritic spine density (Barreto-Cordero et al., 2020; Shimizu et al., 2015) raising 

the possibility that progesterone acts through its derivative allopregnanolone to modulate 

dendritic spines. Studies have shown that ovariectomized female rats treated with estrogen 

replacement and subjected to acute stress showed an increase in spine density in basolateral 

amygdala (BLA) (Shansky et al., 2010). A similar increase in BLA spine density was 

noted in male rats exposed to chronic stress (Mitra et al., 2005). In adulthood, acute stress 

exerts differential effects on CA1 pyramidal cell dendritic spine density in male and female 

rats (Shors et al., 1999). Stress reduces dendritic spine density in female rats when they 

are in proestrus, while it has the opposite effect in male rats (Shors et al., 2001). Similar 

results were observed in female mice where acute stress in the context of higher estrogen 

leads to reduced dendritic spine density and impaired hippocampus-dependent memory, 

while similar stress exposure during a low estrogen state has no effects (Hokenson et al., 

2021). Furthermore, while acute stress in adulthood increases dendritic spines in males, 

developmental stress has the opposite effect in male mice and rats (Monroy et al., 2010; Xu 

et al., 2022) (Table 3). These findings suggest a complex interplay between stress effects and 

sex that may be not only dependent on baseline levels of steroids and neurosteroids but also 

on the age at which the stress occurs.

Testosterone also influences dendritic spine density in the hippocampus with parallel results 

in performance on hippocampus-dependent learning tasks in rats (Muthu et al., 2022). 

Studies have also shown that both testosterone and its derivative DHT can stimulate 

hippocampal spine density in rats (Hatanaka et al., 2015). Taken together, these findings 

raise the possibility that stress-induced changes in progestogens, androgens, estrogens, and 

glucocorticoids, as well as their neurosteroid derivatives may be responsible for some stress-

induced effects on neurons, including on dendritic structure.

In addition to changes in excitatory neurons, developmental and adult stress have been 

shown to influence inhibitory interneurons in both the hippocampus and prefrontal cortex. 

Maternal separation diminishes the migration of parvalbumin positive (PV+) interneurons 

into the developing hippocampus (Katahira et al., 2018). Similarly, exposure to early life 
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adversity has been shown to reduce the number of PV + interneurons in the prefrontal cortex 

of female rats (Gildawie et al., 2021). We have found a reduction in the number of PV 

+ interneurons, and somatostatin + interneurons, in the ventral hippocampus of adult male 

mice previously subjected to maternal separation with early weaning (Murthy et al., 2019) 

although in the case of PV + cells, this reduction likely reflects diminished production of 

parvalbumin rather than an actual decrease in the number of these cells. Studies in adult 

rats have shown that chronic, but not acute, stress also reduces parvalbumin expression 

in hippocampus interneurons (Filipović et al., 2013) (Table 3). Although inhibitory 

interneurons, including PV + cells, are known to express GRs and ERs (Hernández-Vivanco 

et al., 2022; Kraus et al., 2022), it remains unexplored whether the effects of stress on this 

population are mediated through these signaling mechanisms.

Likewise, although both principal neurons and inhibitory interneurons express GABAA 

receptors, which are known targets of neurosteroid derivatives of sex steroids and 

glucocorticoids, the connection between stress effects and neurosteroid action remains 

unexplored.

Impact of stress on perineuronal nets: involvement of steroids and 

neurosteroids?

Many neurons shown to be affected by early life stress are enwrapped in perineuronal nets 

(PNNs), extracellular matrix structures known to regulate neural underpinnings of cognition 

and behavior, including but not limited to, synaptic plasticity, neuronal oscillations, and 

synchrony across brain regions (Sorg et al., 2016; Wingert & Sorg, 2021). Numerous studies 

have investigated the impact of postnatal and adult stress on PNNs and shown complex 

effects that seem to depend on multiple factors, including brain region, sex, and timing/type 

of stressor (Laham & Gould, 2021).

Postnatal stress using the maternal separation and early weaning stress paradigm has been 

shown to increase PNN intensity in the ventral hippocampus in adulthood along with 

increases in avoidance behavior (Catale et al., 2022; Dimatelis et al., 2013; Murthy et al., 

2019). An upregulation of PNN CSPGs such as tenascin, brevican, neurocan was also noted 

in animals subjected to maternal separation (Dimatelis et al., 2013). Other results suggest 

an increase in PNN number in the BLA and HIP animals exposed to stress during the 

postnatal period or in adulthood (Guadagno et al., 2020; Riga et al., 2017), including an 

adult paradigm of enrichment loss (Smail et al., 2023). However, additional studies have 

shown a downregulation in PNN intensity in PFC, BLA (Gildawie et al., 2021; Santiago et 

al., 2018) and PNN number (Gildawie et al., 2020; Klimczak et al., 2021; Ueno et al., 2018; 

Yu et al., 2020) in PFC, HIP, prelimbic cortex, and BLA in animals exposed to postnatal 

and adult stress paradigms such as maternal separation, social isolation, social defeat, and 

chronic mild stress. Sex- dependent effects of postnatal stress have also been observed in 

the development of PNNs around PV + cells in the PFC and BLA of male and female rats, 

with a higher PNN intensity noted in the PFC of male rats exposed to maternal separation 

and juvenile social isolation, while a higher PNN intensity reported in BLA of female 

rats (Gildawie et al., 2021). Similarly, increase in PNN intensity was reported in the right 
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amygdala of male juvenile rats but not females after exposure to early life stress (Guadagno 

et al., 2020). Studies have shown that changes in PNN intensity/number are associated with 

increased in avoidance behavior and impairments in stress regulation (Increased avoid an 

Laham et al., 2022; Lee & Lee, 2021; Murthy et al., 2019; Santiago et al., 2018; Yu et al., 

2020). Collectively, these studies suggest that a dysregulation in PNN intensity and number 

occurs after exposure to several stress paradigms. It is important to consider factors such as 

type of stressor, duration of time after stress exposure (Gildawie et al., 2020, 2021; Laham 

& Gould, 2021; Ueno et al., 2018), sex, and stage of development (Drzewiecki et al., 2020) 

when addressing the impact of stress on PNNs (Table 4).

The potential involvement of steroids and neurosteroids in stress-induced PNN changes 

remains relatively unexplored. Studies have shown that chronic corticosterone treatment 

in adult mice leads to an increase in PNN intensity in the hippocampus (Alaiyed 

et al., 2020), which is consistent with the possibility that stress-induced increases in 

glucocorticoids, or their derivatives, influence PNNs. Studies have shown that inhibition 

of estradiol synthesis increases PNN intensity around PV+ interneurons in the dorsal 

CA1 region of the hippocampus in female mice, a finding that has been causally linked 

to diminished hippocampus-dependent learning and memory and hippocampal neuronal 

oscillations (Hernández-Vivanco et al., 2022). Given that studies have shown early life and 

adult stress affect estradiol levels, it is possible that some stress effects may exert their action 

through modulation of circulating or brain-derived estradiol although the possibility remains 

to be investigated. Allopregnanolone inhibition in adult female mice has been shown to 

alter PNN composition in the ventral CA1, increasing the numbers of PNNs that contain 

the C4S sulfation pattern, a PNN characteristic known to inhibit plasticity (Laham et al., 

2022). Similar changes were observed in ventral CA1 PNNs in adult female mice after 

early life stress (maternal separation with early weaning), an experience that diminishes 

ventral hippocampal allopregnanolone concentrations (Laham et al., 2022). Taken together, 

these findings suggest that early life stress may alter PNN composition through actions on 

allopregnanolone. This is an area that is clearly in need of further investigation. It is also 

worth noting that neuronal activity has been shown to modulate PNN intensity (Evans et al., 

2022), thus, the influence of these molecules on PNNs may occur indirectly, through effects 

on neuronal function.

Impact of stress on glia: involvement of steroids and neurosteroids?

Microglia and astrocytes are highly sensitive to environmental changes and involved in 

inflammatory processes. Several studies indicate that stress may be associated with the 

dysregulation of immune system response (Black, 2003; Kiecolt-Glaser et al., 1996). 

Microglia respond to stress in a variety of ways, including increasing in number, producing 

pro-inflammatory cytokines, and expressing cell surface antigens (Calcia et al., 2016; 

Kettenmann et al., 2011). One of the key cell surface antigens is the intracellular ionized 

calcium-binding adaptor protein, Iba1, which is found in microglia and is upregulated during 

inflammation. Upregulation in Iba1 expression in the hippocampus has been reported in 

rodents exposed to different stress paradigms when compared to unstressed animals (Bian 

et al., 2012; Kojo et al., 2010; Park et al., 2011; Wohleb et al., 2011). A similar increase 

in Iba1 expression is observed in other regions of the brain such as the amygdala, nucleus 
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accumbens, and PFC in animals subjected to stress (Bian et al., 2012; Schiavone et al., 2009; 

Tynan et al., 2010; Wohleb et al., 2011) (Table 5).

Maternally separated male and female rats exposed to a “second hit” of stress during 

adulthood, show an upregulation of Iba1 activity in the PFC, along with hyper-ramified 

microglial morphology, indicating microglial activation or a priming process increasing the 

susceptibility of a heightened response during subsequent stressors (Ganguly et al., 2018; 

Hoeijmakers et al., 2017; Roque et al., 2016; Saavedra et al., 2017; Tay et al., 2018). 

Takatsuru and colleagues report that ELA increases the number and motility of microglial 

processes (Takatsuru et al., 2015). Additionally, exposure to early life adversity results 

in a decrease in the arborization area of Iba1+ cells (Baldy et al., 2018). During normal 

hippocampus growth in mice, there is a decrease in microglial density and phagocytic 

activity. However, in mice exposed to ELA, there is an increase in phagocytic activity during 

hippocampal development as well as an increase in microglial density and surface area in the 

hippocampus at PND 14 (Delpech et al., 2016) (Table 5).

In adulthood, acute stress increases microglial number (Frank et al., 2007), and induces de-

ramification (Sugama et al., 2007) and according to more recent studies, adult exposure to 

acute stress reduces microglial phagocytic activity. (Fonken et al., 2018; Frank et al., 2019). 

Chronic stress in adulthood causes inflammation, which is characterized by an increase in 

brain cytokine levels, and this elevation is associated with changes in microglia morphology 

(Calcia et al., 2016; Yirmiya et al., 2015).

Exposure to chronic stress is associated with an increase in Iba1+ cell density, Iba1 area and 

microglial phagocytic function (Frank et al., 2019; Hinwood et al., 2012; Nair & Bonneau, 

2006; Tynan et al., 2010). Microglia hyper-ramification has also been observed in the PFC 

and hippocampus of animals subjected to chronic restraint stress (Hinwood et al., 2013) or 

repeated swimming tests (Hellwig et al., 2016), while an increase in de-ramified microglia 

were noted in the amygdala, PFC and hippocampus of mice subjected to repeated social 

defeat paradigm (Wohleb et al., 2011) (Table 5).

Stress hormones and cytokines influence glial fibrillary acidic protein (GFAP), a cytoskeletal 

astroglia protein, and an increase in these levels indicates astrocyte activity. An upregulation 

in astrocytic activity and neuroinflammatory cytokines was reported in animals subjected 

to early life stress paradigm such as maternal deprivation (Giridharan et al., 2019; Réus 

et al., 2017, 2019). Conversely, a decrease in GFAP mRNA expression and GFAP + cell 

number was noted in the PFC of mice exposed to maternal separation (Musholt et al., 2009; 

Yamawaki et al., 2018).

Additionally, a decrease in GFAP immunoreactivity was reported in the PFC, ACC, dorsal 

hippocampus of animals exposed to ELA (Abbink et al., 2020; Banqueri et al., 2019). In 

adulthood, exposure to acute stressors resulted in a decrease in astrocyte density (Saur et 

al., 2016), GFAP expression in the hippocampus (Xia et al., 2013) and induces astrocytic 

hypertrophy (Murphy-Royal et al., 2019). Chronic stress in adulthood is associated with 

a reduction in astrocyte number and somatic volume in the hippocampus (Altshuler et 

al.,2010; Banasr et al., 2010; Czéh et al., 2006; Li et al., 2013, Liu et al., 2009, Liu et al., 
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2011, Tynan et al., 2013). Exposure to chronic mild unpredictable stress during adulthood 

is also associated with a decrease in structural complexity of astrocytes (Yamawaki et al., 

2018) (Table 5).

The involvement of steroids and neurosteroids in stress-induced changes in microglia and 

astrocytes has been incompletely explored, but chronic stress-induced changes in microglial 

activation and astrocyte number can be blocked by GR antagonism (Horchar & Wohleb, 

2019; Lou et al., 2018) and stress-related memory formation can be blocked by deleting 

GRs from astrocytes (Tertil et al., 2018; Wiktorowska et al., 2021). Evidence showing 

that allopregnanolone increases microglial cell processes and decreases microglia migration 

in mice, suggests a role for allopregnanolone in modulating microglial morphology and 

inhibiting phagocytic function. (Jolivel et al., 2021). Given these insights into the interplay 

between glial cells and neurosteroids, and considering the known effects of stress on these 

entities individually, it seems increasingly important to explore the impact of stress on glial 

functionality through the modulation of steroids and neurosteroids.

Conclusions

Early adverse experiences are known to alter neurons, glia, and the extracellular matrix 

and many of these effects have been causally linked to behavioral change that lasts into 

adulthood. Understanding the connection between aversive experience and brain changes 

will require considering all these brain components, as well as the many signaling molecules 

that can be altered by early life stress. Early adversity is known to alter the levels of 

glucocorticoids and sex steroids in both the periphery and brain, and these molecules can 

be synthesized in both compartments. While studies have investigated the causal role of 

glucocorticoids in stress effects, less attention has been paid to the potential involvement of 

glucocorticoid derivatives, as well as to sex steroids produced in the periphery and brain, 

and their neurosteroid end products. Additional studies directly investigating the potential 

involvement of these signaling molecules in stress influences on neurons, glia, and the 

extracellular matrix will help to shed light on the complex cascade of events that produce 

lasting changes after early life stress.
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Figure 1. 
Subcellular Compartments for Steroid/Neurosteroid Synthesis. Diagram showing that 

steroid/neurosteroid synthesis occurs in the mitochondria and endoplasmic reticulum.

Cholesterol enters the mitochondria facilitated by StAR and TSPO protein where it is 

cleaved into pregnenolone by enzyme P450scc. Pregnenolone is converted to progesterone 

(P4) by 3β- HSD. In the endoplasmic reticulum, progesterone is converted to testosterone 

by a two-step pathway. 17-hydroxy progesterone and androstenedione catalyzed by 

P450c17 and 17β-HSD respectively. T is reduced to 5α-DHT and then 3α-diol. P450 

aromatase enzyme (P450 aro) reduces androstenedione and T into estrone and estradiol 

respectively. In the cytoplasm, progesterone is also catalyzed into 5α-DHP and then 

into allopregnanolone by 5α-reductase and 3α-HSD). Estrone is reversibly converted 

to estradiol by 17β- HSD. Progesterone is converted into DOC by 21-hydroxylase 

which undergoes two subsequent reduction steps by 5α-reductase and 3α-HSD to 

form THDOC. DOC can also be converted into corticosterone by 11β-hydroxylase. 

Enzymes are denoted in red, steroids and neurosteroids in blue boxes. The arrows and 

directional arrows indicate irreversible and reversible reactions respectively. Abbreviations; 

StAR; steroidogenic acute regulatory protein; TSPO, translocator protein; p450scc, P450 

side chain cleavage; P4, progesterone; HSD, hydroxysteroid dehydrogenase; 17-OH 

progesterone, 17-hydroxyprogesterone; 5α- DHT, 5α- dihydrotestosterone; 5α- DHP, 5α- 

dihydroprogestrone; DOC, deoxycorticosterone; THDOC, tetrahydrodeoxycorticosterone
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Figure 2. 
Chemical Structures of Neurosteroid Synthesis. Neurosteroids are closely related 

structurally, which allows many to serve as ligands for the same receptors. Neurosteroids 

binding to GABAA receptors and endocannabinoid receptors are surrounded by red and 

blue boxes respectively. Abbreviations: HSD, hydroxysteroid dehydrogenase; P450 scc, 

P450 side chain cleavage enzyme; P450 aro, P450 aromatase; DOC, deoxycorticosterone; 

DHDOC, dihydrodeoxycorticosterone; THDOC, tetrahydrodeoxycorticosterone; 5α-DHP, 

5α- dihydroprogesterone; 17-OH progesterone, 17-hydroxyprogesterone; 5α-DHT, 5α- 

dihydrotestosterone.
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Figure 3. 
Diagram Illustrating Some of the Effects of Developmental Stress on Steroid and 

Neurosteroid Levels, Neuronal Morphology, Glial Expression, and PNN Integrity. 

Note: Stress influences various aspects of brain function that extend beyond the 

factors mentioned in the diagram. P4, Progesterone; E2, Estradiol; T, Testosterone; 

ALLO, Allopregnanolone; CORT, Corticosterone; DHP, Dihydroprogesterone; DHT, 

Dihydrotestosterone; DOC, Deoxycorticosterone; THDOC, Tetrahydrodeoxycorticosterone; 

BLA, Basolateral amygdala; PFC, prefrontal cortex; HIP, hippocampus; dHIP, dorsal 

hippocampus; vHIP, ventral hippocampus; Iba1, ionized calcium binding adaptor molecule 

1; GFAP, Glial fibrillary acidic protein; PNN, Perineuronal nets; PV, Parvalbumin; CSPG, 

Chondroitin sulfate proteoglycan. ♂: male ♀: female.
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Table 2.

Impact of Stress on Sex Steroid, Glucocorticoid, and Neurosteroid Levels.

Time of 
Stress Stressor Species/Sex

Brain 
Region

Sex Steroid/
Glucocorticoid/

Neurosteroid
Change in 

Levels

 Associated 
Behavioral 
Changes Reference

Early Life LBN Rats/Male 
and Female

N/A (serum 
levels)

E2 Increased in 
males

Shorter latency 
to engage in 
reproductive 
behavior

Eck et al., 2020, 
2022

MS Mice/Male N/A (serum 
levels)

T Decreased Decreased 
aggressive 
behavior

Miyaso et al., 
2021; Tsuda et al., 
2011

MSEW Mice/
Female 
(Diestrus)

vHIP P4, ALLO Increased P4, 
Decreased 
ALLO

Increased 
avoidance

Laham et al., 2022

Restraint- 
Late 
Gestation

Rats/Male 
and Female

mPFC, HIP P4 to 5α-reduced 
metabolites (DHP, 
ALLO), 3α-diol, 
DHT

Decreased 
Conversion to 
5α-reduced 
metabolites. 
Decreased 3α-
diol, DHT in 
males

Impaired object 
recognition, 
Increased 
avoidance, 
reduced social 
interaction

Paris & Frye, 
2011b; Walf & 
Frye, 2012

LPS – Late 
Gestation

Rats/Female HIP, PFC ALLO Decreased Impaired object 
recognition

Paris et al., 2011

Adulthood SI Mice/Male, 
Rats/Male

mPFC, 
nACC, HIP, 
OB

ALLO, THDOC, 
5α- reductase 
P5, P4, ALLO, 
THDOC, DHP

Decreased Increased 
avoidance and 
aggression

Bortolato et al., 
2011; Serra et al., 
2005, 2000; Dong 
et al., 2001; Pinna 
et al., 2004

Swim, CO2 Rats/Male 
and Female

FC, AMY, 
Brainstem, 
HYPO, 
serum

ALLO, DOC, P4, 
THDOC

Increased 
(More in 
Females) 
Decreased 
ALLO in 
serum

Disrupted 
prepulse 
inhibition

Sze et al., 2018; 
Reddy & 
Rogawski, 2002; 
Vallée et al., 2000; 
Barbaccia et al., 
1996; Purdy et al., 
1991; Pallarès et 
al., 2015

CUS Mice/
Female

N/A (serum 
measures)

T, E2 Decreased Not reported Gao et al., 2020

Restraint, 
Shock, 
Swim

Rats/Male N/A (serum 
measures)

T Decreased Greater latency 
to engage in 
reproductive 
behavior

Retana-Márquez 
et al., 2003;

*
Compared to unstressed controls.

LBN, limited bedding and nesting; MS, maternal separation, MSEW, maternal separation and early weaning; SI, social isolation; 
DHP, dihydroprogesterone; DHT, dihydrotestosterone; DOC, deoxycorticosterone; DHDOC, dihydrodeoxycorticosterone; THDOC, 
tetrahydrodeoxycorticosterone; T, testosterone; E2, estradiol; ALLO, allopregnanolone; P4, progesterone; P5, pregnenolone; PFC, prefrontal 
cortex; HIP, hippocampus; ACC, anterior cingulate cortex; OB, olfactory bulb; FC, frontal cortex; AMY, amygdala; HYPO, hypothalamus.
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Table 3.

Impact of Stress on Neurons: Involvement of Steroids and Neurosteroids.

Time of 
Stress Stressor Species/Sex

Brain 
Region

Sex Steroid/
Glucocorticoid/

Neurosteroid

Affected 
Neuron Type or 

Area Effect on Neurons Reference

Early Life MS, MS + 
SI

Rats/Male 
and Female; 
Mice/Male 
and Female

HIP, 
PFC

CORT Immature 
neurons of 
dentate gyrus; 
PV + 
Interneurons

Reduced number of 
new neurons and 
PV+ neurons, as 
well as suppressed 
maturation of PV+ 
neurons

Mirescu et al., 
2004; Katahira et 
al., 2018

Multiple 
stressors

Rats/Male 
and Female

dHIP, 
mPFC, 
HYPO

DHP, P4, E2 Pyramidal cells Decrease in spine 
density in dHIPP, 
no differences in 
spine density noted in 
mPFC and HYPO

Paris & Frye, 
2011a

Adulthood Shock Rats/Male 
and Female

HIP E2 CA1 pyramidal 
cells

Increased Dendritic 
Spine Density

Shors et al., 
1999; Shors et 
al., 2001

Restraint, 
multiple 
acute 
stressors

Rats/Male 
and Female

HIP E2 (in females), 
Glucocorticoids

Pyramidal cells Decreased dendritic 
spine density, apical 
dendritic length and 
complexity

Hokenson et al., 
2021; Watanabe 
et al., 1992; 
Luine et al., 1994

Restraint, 
SI

Rats/Male 
and Female

HIP, 
AMY

CORT, E2 PV + 
interneurons of 
CA1, CA3, and 
dentate gyrus; 
BLA pyramidal 
cells

Chronic stress 
induced decrease in 
number; Increase 
in spine density; 
Increase in dendritic 
length at intermediate 
branches

Filipović et al., 
2013; Kraus et 
al., 2022; Mitra et 
al., 2005; 
Shansky et al., 
2010

*
Compared to unstressed controls.

MS, maternal separation; SI, social isolation; CORT, corticosterone; E2, estradiol; P4, progesterone; DHP, dihydroprogesterone; PV, parvalbumin; 
BLA, basolateral amygdala; HIP, hippocampus, PFC, prefrontal cortex; AMY, amygdala; HYPO, hypothalamus.
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Table 4.

Impact of Stress on Perineuronal Nets: Involvement of Steroids and Neurosteroids?.

Time of 
Stressor Stressor Species/Sex

Brain 
Region PNN Change

Associated 
Behavioral Changes Reference

Early Life MSEW Mice/Male and 
Female; Rats/
Male and 
Female

HIP, BLA, 
PFC

Increased PNN Intensity; 
Increased PNN CSPGs; 
Affects PNN Composition 
(increased C4S+/WFA + 
cells in ventral CA1)

Increased avoidance Murthy et al., 2019; 
Dimatelis et al., 
2013; Laham et al., 
2022

MS, SI Rats/Male and 
Female

PFC Reduced PV + PNN 
structural integrity, PV + 
PNN reduced number in 
females

Increased 
locomotion, 
increased risk 
assessment in 
females

Gildawie et al., 2021

LBN Rats/Male and 
Female

BLA Increased PNN density 
around PV + cells

Increased fear Guadagno et al., 2020

LBN Rats/Male BLA Reduced PNN intensity Increased threat 
response

Santiago et al., 2018

Adulthood Social 
Defeat

Rats/Male and 
Female

HIP Increased PNN number 
around PV + cells

Reduced object 
location memory and 
maintenance of LTP

Riga et al., 2017

SI Mice/Male HIP, RC, 
PFC

Reduced PNN number; 
Reduction in PNN number 
in PFC

N/A Klimczak et al., 
2021; Ueno et al., 
2018

CMS Rats/Male PFC Reduced PNN number Depressive-like 
behavior

Yu et al., 2020

Chronic 
CORT

Mice/Male and 
Female

HIP Increased PNN Intensity Increased avoidance, 
reduced working 
memory

Alaiyed et al., 2020

*
Compared to unstressed controls.

MSEW; Maternal separation and early weaning; MS, maternal separation; SI; social isolation; LBN; limited bedding and nesting; CMS, chronic 
mild stress; PNN, perineuronal nets; CSPG, chondroitin sulfate proteoglycan; C4S, chondroitin-4-sulfate; WFA, wisteria floribunda agglutinin; 
LTP, long-term potentiation; PFC, prefrontal cortex; HIP, hippocampus; BLA, basolateral amygdala; RC, retrosplenial cortex.
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Table 5.

Impact of Stress on Microglia and Astrocytes: Involvement of Steroids and Neurosteroids?

Time of 
Stressor Stressor Species/Sex Brain Region Changes in Microglia/Astrocytes Reference

Early Life MS Rats/Male and 
Female; Mice/
Male and Female

HIP; SSCx; 
Medulla; PFC; 
nACC, dorsal 
striatum

Increased activated microglia, 
decreased astrocyte density and 
number of processes; Increased 
motility of microglial processes in 
SSCx; Increased size of microglial 
soma and decreased arborization 
in medulla; Decreased astrocytes

Roque et al., 2016; 
Takatsuru et al., 2015; Baldy 
et al., 2018; Delpech et 
al., 2016: Giridharan et al., 
2019, Réus et al., 2017, 
2019; Banqueri et al., 2019

MS and FR Rats/Male and 
Female

PFC Increased Iba1, hyper- ramified 
microglia

Ganguly et al., 2018

MS and LPS Rats/Male HIP Increased microglial activation, 
decreased astrocytes

Saavedra et al., 2017

MS and SI Rats/Male and 
Female

PFC Decreased GFAP mRNA Yamawaki et al., 2018

LBN Mice/Male and 
Female

HIP, entCx Increased astrocyte coverage at P9, 
and a decrease noted at 10 months

Abbink et al., 2020

Adulthood CUS Mice/Male; Rat/
Male and Female

HIP; PFC Increased activated astrocytes 
in HIP; atrophy of astrocyte 
processes; Decreased GFAP 
mRNA levels in PFC; decreased 
astrocytes in HIP

Bian et al., 2012; Li et al., 
2013; Liu et al., 2009, 2011; 
Lou et al., 2018; Tynan et 
al., 2013

Restraint Gerbil/ Male; 
Rat/Male and 
Female

HIP Hypertrophied and activated 
microglia; Increase in microglia 
density, number

Park et al., 2011; Tynan et 
al., 2010

Restraint and 
Swim

Mice/Male and 
Female

Thalamus, 
HYPO, HIP, 
Substantia 
nigra, central 
gray

Increased microglial activation Sugama et al., 2007

Shock Rats/Male and 
Female

HIP Increased microglia, no change 
in astrocytes; reduced microglial 
phagocytic activity

Frank et al., 2007; Fonken et 
al., 2018

Social stress Mice/Male AMY, HIPP, 
PFC

Increased de-ramified microglia Wohleb et al., 2011

Psychosocial 
stress

Tree shrew/Male HIP Decreased astrocytes and soma 
volume

Czéh et al., 2006

SI Rats/Male nACC, PFC Increased microglia Schiavone et al., 2009

*
Compared to unstressed controls.

MS, maternal separation; MSEW, maternal separation and early weaning; FR, food restriction; LPS, lipopolysaccharide; SI, social isolation; LBN, 
limited bedding and nesting; CUS, chronic unpredictable stress; iba1; ionized calcium binding adaptor molecule-1; GFAP, Glial fibrillary acidic 
protein; PFC, prefrontal cortex; HIP, hippocampus; SSCx, somatosensory cortex; nACC, nucleus accumbens; entCx, entrorhinal cortex; HYPO, 
hypothalamus; AMY, amygdala.
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